Reports in Informatics no. 45, 1990 (revised 1997), pp. 26, ISSN 0333-3590.
Department of Informatics, University of Bergen, P.O.Box 7800, N-5020 Bergen, Norway

Dependencies and Space Time Algebras
in Parallel Programming

Magne Haveraaen
University of Bergen, Norway

Abstract

One aim for the development of the functional programming language Sapphire is to give
explicit control over the distribution of computations on the processors of massively parallel
machines, yet Sapphire itself does not contain any references to processes nor communica-
tions. Sapphire is based on the view that an algorithm has a data dependency aspect and a
computational aspect. A program is formed by combining the computational aspect, defined
in a constructive recursive function, with an appropriate data dependency. The data depen-
dency defines the dependency pattern of the algorithm, and is coded as a normal program
module. In order to execute a program on a parallel computer, the program’s dependency
pattern has to be embedded in the computer’s communication structure. In Sapphire this
embedding is also expressed as a reusable program module. The approach is illustrated by
defining a butterfly data dependency, and coding the broadcast-sum and the fast Fourier
transform algorithms over it. These programs are targeted for two different parallel archi-
tectures, a linear array and a hypercube, by providing two alternative definitions of the
butterfly.

1 Introduction

In the analysis of programs for the purpose of generating parallel code, see e.g. Chen & al.
[5] and Sarkar [17], it has been known for a long time that the data dependencies inherent
in a program is of utmost importance. Most of these approaches rely on extracting and
analyzing the data dependencies implicit in the code. In this paper we show that it is
possible to separate the definition of an algorithm’s data dependency from its computa-
tional aspect, and that both aspects may be defined by simple program modules. This
turns out to be very useful in porting programs to, and between, parallel machines. The
computational aspect remains unchanged, while the data dependency modules are defined
to distribute the program on the parallel machine. The modules are reusable components,
and the same data dependency may be used by many algorithms. In this paper we will show
two different algorithms that have the same data dependency, illustrating the reusability
of these components.

The data dependency modules define a class of mathematical structures we call data
dependency algebras, or dda’s for short. Every dda is isomorphic to a graph, so a dda is



just another way of expressing the data dependency graph. Every node in the dda corre-
sponds to a computation in the algorithm, while an arc represents dependencies between
computations. We have chosen to develop a functional programming language to work
with this concept. The recursive functional style gives the programming a more holistic
view, helping us avoid much of the technical detail an imperative style would force us to
work with.

The space-time communication structure of a parallel machine may also be viewed as a
dda. We call this the space-time algebra (sta for short) for that machine. Since we are using
discrete time, the sta’s basically model the class of SIMD (single instruction multiple data)
computers. In the sta a node corresponds to a processing element at a specific time-step,
and an arc corresponds to a communication channel. In the paper Miranker & Winkler [16]
it was proposed that a method for programming parallel machines would be to embed the
program’s data dependency graph in the space-time graph of the target parallel machine.
Since we are able to express these graphs as program code, the embedding of an algorithm’s
dda can also be expressed using normal program code. We do this by expressing the dda
in terms of the transitive closure, the tca, of an sta. The dda’s nodes are given space-
time coordinates by this, and dependency arcs become communication paths in the sta.
This defines precisely the distribution and communication structure of the algorithm on a
parallel computer. With this information we may compile a functional program to parallel
imperative code with the recursion removed. The approach is best suited for massively
parallel machines, since, in principle, we want to have one data item per processor.

We have developed the functional programming language Sapphire for exploring this
approach. Its theoretical bases is studied in the paper Cyras and Haveraaen 8].

This paper is organized as follows. In the next section we introduce some basic concepts
of Sapphire, some of its built-in types, and define the butterfly dda using these tools. Then
we express two algorithms, the fast Fourier transform and the broadcast-sum, in terms of
the butterfly. In section four we define sta’s for a hypercube and a linear array, and show
how a butterfly may be embedded in these space-time structures. We then compare our
approach with some other approaches before the concluding section.

2 A Functional Programming Language

Sapphire programs are based on the theory of many-sorted algebras (see, e.g., Wirsing [21]).
Important here is the separation between the syntactic declaration, the signature, of types
and functions and their implementation. This is a feature shared with languages such as
Ada [1], and Sapphire signatures are parameterized much the same way that Ada’s generic
packages are parameterized, i.e., with types and functions as parameters. In Sapphire we
will often have several implementations (package bodies) for a signature, e.g., different
embeddings of a butterfly dda for different machine architectures.



signature D
parameters
sort dda, dir
operations
canR:dda * dir — bool;
—— canR(p,d) checks if node p has an outgoing arc in direction d
r  :dda * dir | canR — dda;
—— the arc from node p in direction d leads to the node r(p,d)
dirS :dda * dir | canR — dda;
—— the arc from node p in direction d has the direction dirS(p,d) at node r(p,d)
canS :dda * dir — bool;
—— canS(q,e) checks if node q has an incoming arc in direction e
s :dda * dir | canS — dda;
—— the arc to node q with direction e comes from the node s(q,e)
dirR :dda * dir | canS — dda;
—— the arc to node q with direction e has the direction dirR(q,e) at node s(q,e)
end

Figure 1: The signature D for a data dependency algebra. The signature itself has no
special interpretation, only the comments explain the intended meaning of the functions.

2.1 Signatures and Algebras

Signatures declare sort names and function names, defining syntactic and type properties.
A sort name is an identifier for a type, specifically there is a sort name bool (standing for the
logical values). A function name, declared by f : sy *sp * ... s, — s, defines an identifier f,
a domain sy %Sy * ... *s,, and a codomain s. The s and s; are sort names, and the declara-
tion means that the result is of sort s, and that the argument at position i should have sort
si. This would be expressed by the declaration function f (x; :s1, X2 1S3, ..., Xq:Sp) :'S
in a language like Ada, where the parameters x; are formal parameter names. Given
that p:s; *sy*...%s, — bool (a predicate declaration), we will sometimes use the form
sy kSp*...%s, | p for the domain. This means that f is defined for all arguments where
p is true. We will use this to declare partial functions, i.e., functions that need not be
defined for every argument value. A constant is declared as a function with an empty list
of arguments.

A signature (see for instance Figures 1 or 6 or the first part of Figure 2) declares a
collection of sort and function names, after the keyword defines. Parameters to a signature
are given as a block of sort and function names after the keyword parameters. A signature
may contain several parameter blocks before the actual declaration.

An algebra associates a meaning to a signature by defining a carrier S for each sort
name s and a function for each function name. A carrier is a set, e.g. defined by a type ex-
pression in a program implementation. Given a function name f : s; s % ... *xs, — s the
associated function f must be defined on the corresponding sets f : S x Sy x...x .5, — S.
Functions may be defined using program code, which in principle is just expressions formed
from previously defined functions.



2.2 Implementations

One way to define the algebra for a specific signature is to provide constructions, commonly
known as implementations. In Sapphire an implementation is a module with the declaration
of a parameterized signature followed by a code section. The code section has to define
expressions giving appropriate semantical definitions for all entities defined in the defines
section of the signature declaration. The implementation module does not have global
bindings, and all the sorts and functions accessible inside it are declared in the parameters
part of the signature. When an implementation is instantiated, a meaning will be supplied
to the parameters.

The code defining a sort defines its data structure, and is formed using type expressions.
A type expression is either a product of sorts, a conditional product, or a disjoint sum. A
product definition has the form s = s; * s, % ... x 5, where the s; are sort names. Given that
S, is the carrier for s;, then the carrier for s is the Cartesian product S; x Sy x ... x S,. A
conditional product s = sy *x sy % ... %s, | p, where p : s; % sp % ... * s, — bool is a predicate,
defines the carrier for s to be the set

{(1’1,332,...,]7”)631 X SQ X ... X Sn ‘ p(ml,xg,...,xn)}

This is also known as set comprehension. Disjoint sums are not used in this paper and will
not be defined here. Functions are defined in the traditional way: f(x1,Xa,...,X,) =exp,
where exp is formed from function applications and the use of the variables x;. Figure 2
shows a complete implementation module. The module will be explained at the end of this
section.

Within the code section of an implementation module the definitions are fully visi-
ble. Thus the definition of a sort makes its right hand side interchangeable with its left
hand side. This is necessary in order to define the functions, see, e.g., the canR and canS
predicates in Figure 2, which rely on the fact that dda is a pair of integers. However, an
implementation is an encapsulation mechanism: the defined entities are atomic for a user
of the implementation module. This can be seen in Figure 2, where the functions r and s
return a pair of integers. A user of the module can only see the declared sort name dda,
and will have to consider the result of these functions as atomic values.

For simplicity, we will assume that bool and its usual operations (the constants true and
false, operations not : bool — bool, and : bool * bool — bool, and or : bool * bool — bool), as well
as the integers (int with carrier Z) and complex numbers (complex) with their common
operations are part of the language. In addition we will freely use the following integer
operations. (When referring to binary digits (bits), the binary representation of a number,
we count the bits from the right, the rightmost being digit 0).

digit :int * int — int; —— digit(n,i) extracts bit i from n
setdigit cint ¥ int ¥ int — int; —— setdigit(n,i,b) sets bit i of n to b
complement : int * int — int; —— complement(n,i) complements bit i of n,
—— complement(n,-1)=n
reverse :int ¥ int — int; —— reverse(n,d) reverses the bits of the d-bit number n



implementation Butterfly
parameters
operations
h:— int; —— height of butterfly
defines
sort dda, dir
operations
—— operations as in signature D:
canR :dda * dir — bool;
r :dda * dir | canR — dda;
dirS :dda * dir | canR — dir;
canS :dda * dir — bool;
s :dda * dir | canS — dda;
dirR :dda * dir | canS — dir;
—— operations specific for the butterfly data dependency:

left :— dir; —— the two directions for the arcs in the butterfly
right : — dir;
B : — tablejnt,dda; —— sequence of bottom nodes, nodes without outgoing arcs
lower : dda — dda ——move to the bottom node along the vertical arcs
local
operations
ddinv:int * int — bool —— datainvariant for the dda
drinv :int — bool, —— datainvariant for dir
code
ddinv(r,c) = (0<=r<=h) and (0<=c<2**h);
dda = int * int | ddinv; —— the set {(z,y)e Zx Z| 0 <z <nand 0 <y < 2"}
drinv(n) =(0<=n<=1)
dir = int | drinv; — the set {0,1}
left =0;
right =1
canR((rf,cf), d) = (0 < rf); —— there are no nodes below row 0
canS((rt,ct), d) = (rt < h); —— there are no nodes above row h
r((rf,cf), d) = (rf-1,setdigit(cf,rf-1,d)); —— direction left to lower column numbers,
s((rt,ct), d) = (rt+1,setdigit(ct,rt,d)); —— direction right to higher column numbers.

dirS((rf,cf), d) = if d = digit(cf,rf-1) — d
| d<>digit(cf,rf-1) — 1-d
fi; —— crossover arcs have different “r” and “s” directions
dirR((rt,ct), d) = if d = digit(ct,rt) — d
| d<>digit(ct,rt) — 1-d
fi;
B = evolving c : int s-from add(create,0,0) until (c=2**h)
in true — (c+1,(0,c)) end;
—— using the natural numbers as a linear dda
lower(rt,ct) = (0,ct);
end

Figure 2: Code defining a butterfly of height h. left will index the left arc (towards the
lower column numbers) and right the right arc (towards the higher column numbers) at
a node.




:
¥

"V
AN

VA

SSSSSo=====
B==——--_—=N
N L BNSS S P
SR A KK
R | SRR
¢'a~§' ‘7a§~
KL TR TR TS

4’ | ’ 4»4

iig

W

Figure 3: A butterfly of height 4

The module Butterfly (see Figure 2) defines the butterfly data dependency graph (Fig-
ure 3), basically with signature D. The implementation uses integer pairs, in the range (0,0)
through (h,2" — 1), as the carrier. The butterfly has nodes indexed by coordinate pairs
(i,j), i being row index and j being column index. A butterfly may be defined recursively
on the height parameter h. With height 0, the butterfly contains only one point, indexed
by (0,0). A butterfly of height h, is composed (horizontally) from two butterflies of height
h-1, such that 2" ! is added to the column numbers of the rightmost subbutterfly. Then
a new top row with indices (h,0) through (h,2" — 1) is added. A node (h,) in the top row
is connected by a vertical arc to the node (h-1j) (a top node in one of the butterflies of
height h-1) and by a diagonal arc to the node (h-1,complement(j,h-1)). The r function captures
the relationship between a node and the nodes it has arcs leading to, while the s function
allows a move in the opposite direction. This implementation also defines a table, actually
a sequence, B of bottom nodes (row 0), and an operation lower which moves vertically from
a node to the bottom.

2.3 Data Dependency Algebras and Constructive Recursion

A data dependency algebra is the definition of a directed multigraph using program code.
A directed multigraph is a set of nodes N and a set of arcs E, and functions k : E—N,
returning the source node of an arc, m : E— N, returning the target node of an arc. Given
a set D of directions, we may use the elements of this set to enumerate all outgoing arcs at
each node. Then a node neN and a direction deD, the source representation, will uniquely
identify each arc. The function k on this representation is just k(n,d) = n. We may also
enumerate the incoming arcs at every node using D, and represent the arcs by node and
incoming direction, the target representation. Then the function m becomes trivial because
m(n,d) = n. Note that source and target representations may have different directions

6



associated with the same arc.

In the definition of a data dependency algebra we think in terms of both of these
representations for identifying arcs. We have a set of nodes, carrier for the sort name
dda, and a set of directions, carrier for the sort name dir. Given the source representation,
we define r-functions (for receive) r: dda * dir —dda, that return the target node of an arc
(corresponding to m above), and dirS : dda * dir —dir (direction to send), that returns the
direction in the target representation of the same arc. Thus the pair (r(p,d),dirS(p,d)) switches
from the source representation (p,d) to the target representation of the same arc. Since
only some of the directions dir will be in use at any one node, these functions are partial,
and the predicate canR(p,d) (can receive) will indicate whether the expression (p,d) actually
identifies an arc in the source representation. We do not need to define an equivalent of
the k function, as this just returns the first component of the dda * dir pair. Similarly we
have the functions s (send), dirR (direction to receive), and canS (can send) on the target
representation. This is summed up in Figure 1, where we declare the signature D with an
explaining commentary.

Definition 2.1 [dda] A data dependency algebra has signature D (see Figure 1) and sat-
isfies the axioms (the “=" means that the equations are conditional)

canR(p,d) = canS(r(p,d),dirS(p.d));
canR(p,d) = s(r(p,d).dirS(p,d)) =
canR(p,d) = dirR(r(p,d),dirS(p,d)) =
canS(p,d) = canR(s(p,d),dirR(p.d));
canS(p.d) = r(s(p.d).dirR(p,d)) = p
canS(p,d) = dirS(s(p.d).dirR(p.d)) = d.

O

Figures 4 and 5 illustrate the relationship between a graph and the functions declared
in D. They also show some expressions using these functions. In Figure 2 we declared
the butterfly dda. Another example is the infinite linear graph. This dda is definable by
taking the natural numbers as carrier for dda, with only one direction unit. The predicates
are canR(n,unit)= 0<n and canS(n,unit)=true. The functions r(n,unit)=n-1 and s(n,unit)=n+1. Both
dirS and dirR return unit for all arguments.

In our functional language we express recursion as following the r-connections of a dda.
A constructive recursive function (see Cyras and Haveraaen [8]) is a function where the
argument domain is a dda and that satisfies the following:

Definition 2.2 [constructive recursion] Given a data dependency algebra with signature
D (Figure 1). A function f with signature f: dda — t, where t is any sort, is constructive
recursive if the program code used to define it has the following syntactic restrictions:

e the definition of f is not recursive, or

e all recursive calls of f in the code for f(p) are of the form f(r(p,d)).

7



—— paths from the top

(a2) = r(b1) =

r(a,1) = r(r(a,2), 1) I

(r(b2),1) = r(r(b.1).2) = r((a,2).2) = e
(r(@1),1) = r(r(r(a,2),1),1) = h;
r(r(r(b,1),1),2) = r(r(r(5,2),2),1) = 3;

—— all paths from the bottom to node ¢
s(s(h,1),2) = s(s(s(h,1),3),1) = ¢

s(s(7,1),2) = s(s(s(4,1),3),1) = &

—— circular trips

a = s(s(r(a,1),2),1) = s(r(r(a,2),1),1);

b = s(s(r(r(b,1),2),2),1) = s(s(r(r(5,2),1),1),2);

i = r(r(s(s(s(4,1),3),2),2),1);

Figure 4: A simple directed graph illustrating the dda concepts. The nodes are named
by letters, and each outgoing arc at a node is enumerated from 1 to 3 from left to right,

likewise for each incoming arc. The dda functions for this graph are defined in Figure 5.
The right column state some properties of the graph based on these functions.

rla

r

The use of the r function of the dda in the definition of f may be thought of as if the
function call f(p) receives the value of the function f at the node r(p,d). From this follows
that the value of f at a node q has to be sent to the nodes s(q,e) for all directions e such that
canS(q.e). This is the reason for the send-receive terminology in the definition of a dda. The
dda itself then defines the data dependencies of the function f. The computations of f, its
computational aspect f', is obtained by replacing the recursive calls f(r(p,d)) with variables.
Setting these variables to the appropriate values, i.e., the value of f at r(p,d), will allow the
non-recursive function f' to compute the value that f(p) has.

As an example of a constructive recursive function we will define the Broadcast-Sum.
It is a very simple function that adds together the values at the bottom node of a butterfly,
so that a copy of the sum is placed in all top nodes. The broadcast and the summation is
done intermixed. One way to envision this is to look at the butterfly as many juxtaposed
trees, each one with a distinct top node as its root, and all trees sharing all bottom nodes
as their leaves. The function sum below defines the summation on any one of these trees,
and for a butterfly dda the sum is computed on all trees in parallel.

sum : dda — complex,

sum(d) =if  canR(d,left) — sum(r(d,left)) + sum(r(d,right))
| not canR(d,left) — lookup(DV,d)
fi

The sum function defines a value at every node of the butterfly dda. The values at the
bottom nodes are given by lookup(DV,d). DV is a distributed table, i.e., every element of
8



canR(a,1) = true; r(a,1) = f; dirS(a,1) =1; canS(a,1) = false
canR(a,2) = true; r(a,2) =¢; dirS(a,2) =1; canS(a,2) = false
canR(a,3) = false; canS(a,3) = false
canR(b,1) = true; r(b1) =¢; dirS(hl) =1; canS(b1) = false;
canR(b,2) = true; r(b2) =d; dirS(h2) =1, canS(b,2) = false;
canR(b,3) = false; canS(b,3) = false;
canR(¢,1) = true;  r(¢,1) = f;  dirS(¢,1) = 2; canS(e,1) = true;  s(¢,1) =a; dirR(¢,1) = 1;
canR(¢,2) = true;  r(c,2) =e; dirS(c2) = 1; canS(c,2) = true;  s(¢,2) =b;  dirR(¢,2) = 1;
canR(c,3) = false; canS(c,3) = false
canR(d,1) = true; r(d,1) =e¢; dirS(d,1) =2; canS(d,1) = true; s(d,1) =0b; dirR(d,1) =1;
canR(d,2) = true; r(d,2) =g¢; dirS(d,2) =1; canS(d,2) = false
canR(d,3) = false; canS(d,3) = false
canR(e,1) = true; r(e,1) = f; dirS(e,1) = 3;  canS(e,1) = true;  s(e,l) = ¢  dirR(e,1) =2
canR(e,2) = false; canS(e,2) = true;  s(e,2) =d;  dirR(e,2) =1
canR(e,3) = false; canS(e,3) = false
canR(f,1) = true; r(f,1) =h; dirS(f,1) =1; canS(f,1) =true; s(f,1)=a; dirR(f1)=1
canR(f,2) =true; r(f,2) =14; dirS(f,2) =1, canS(f.2) =true; s(f2)=c¢ dirR(f2)=1
canR(f,3) = false; canS(f,3) = true; s(f,3) =e; dirR(f,3)=1
canR(g,1) = true; r(g,1) =4; dirS(g,1) =2; canS(g,1) = true; s(g,1) =d; dirR(g,1) =2
canR(g,2) = true; r(g,2) = j; dirS(g,2) =1, canS(g,2) = false
canR(g,3) = false; canS(g,3) = false
canR(h,1) = false; canS(h,1) = true; s(h,1) = f; dirR(h,1) =1;
canR(h,2) = false canS(h,2) = false
canR(h,3) = false canS(h,3) = false
canR(4,1) = false canS(4,1) = true;  s(4,1) = f;  dirR(:,1) = 2;
canR(4,2) = false; canS(4,2) = true s(,2) = ¢; dirR(:,2) =1,
canR(4,3) = false canS(4,3) = false
canR(j,1) = false canS(j,1) = true;  s(4,1) = ¢; dirR(j,1) = 2;
canR(j,2) = false canS(j,2) = false;
canR(j,3) = false canS(j,3) = false;
Figure 5: The definition of the dda functions for the graph illustrated in Figure 4. This
specification is rather cumbersome because there is no regularity in the graph. Compare
this with the definition of the butterfly (Figure 2) which defines a butterfly of any size.

DV is associated with a node d of the butterfly dda. The values at the top nodes of the
butterfly will contain the computed sums for all the elements of the table DVv.

2.4 Tables and the evolving statement

Tables play an important role in the definition and distribution of data on a computer, so
it is one of the few built in types in Sapphire. The signature 7 (see Figure 6) declares
the table operations. A table may be viewed as an array where the index type need
not be an integer, or a symbol table which may be indexed by and store any type of
data. The table type is parameterized by an index type ind and element type base. We
will sometimes subscript the sort table with its parameters, e.g., tablejng pase to distinguish



signature 7
parameters
sort ind, base
defines
sort table —— a table of entries of type base indexed by ind
operations
create :— table;
—— an empty table, i.e., a table with no entries
legal :table * ind — bool;
—— legal(T,i) checks if i is an index for an entry in T
legent :table * ind * base — bool,
—— if legent(T,i,b) then it is legal to add b with i as index to T
—— note that legent(T,i,b) = not(legal(t,i))
add  :table * ind * base | legent — table;
——add(T,i,b) returns a table where b has been added to T at index i
lookup :table * ind | legal — base;
—— lookup(T,i) returns the value indexed by i in T
remove : table * ind — table;
—— if legal(T,i) is satisfied, then remove(T,i) returns a table where the entry
—— indexed by i has been removed from T, otherwise it returns T
size :table — int;
—— size(T) tells the number of entries in the table T
end

Figure 6: The signature 7 for the built in type table. Table is polymorphic, with index
and base types as parameters.

different instantiations of the type. With reals as index type and integers as base type for
a table instantiation, the expression 0 = size( remove( remove ( add( create, 2.1, 45), 3.4), 2.1 ) is
well defined and true.

A table indexed from 1 by consecutive natural numbers is called a sequence. We will
often use a shorthand of the form [a,b,c,...] to denote specific sequences. This stands for
the expression add(...add(add(add(create,1,a),2,b),3,c),...) .

A table where the index type is a dda may be thought of as defining a value distributed
over (some of) the nodes of the data dependency graph; A value belongs to the node n if
it is indexed by n in the table.

In addition to the operations given in the signature 7 , Sapphire has an evolving state-
ment which also manipulates tables. There are some variations of this statement, of which
the from and s-from variants are relevant to this presentation. The simpler statement is
the from variant, which has the following following syntactic structure:

evolving dvar
from dtable
in guard — (tind,tbase) end

This is a combined filter, or set comprehension, and map statement on the table dtable. The
dvar is a local variable name ranging over the index type of the table dtable. The guarded

10



expression of the form guard —(tind,tbase) is just like an alternative in an if-statement, and
acts as a filtering statement, only letting the values of dvar satisfying the guard statement
to appear in the resulting table. The resulting table consists of the pairs (tind tbase), where
the expression tind identify the new indices and thase are the base values being indexed in
the resulting table. Given a table X : tablejnt rear, the evolving statement:

evolving i : int from X

in lookup(X,i)<>0.0 — (i,round(lookup(X,i)*lookup(X,i))) end

will return a tablejn; jne Where all elements equal to 0.0 have been removed (the filter part),
and the other elements have been squared and rounded to the nearest integer (the map
part). It is also possible that the result table has different index values, and even different
index type, from the input table.

The other variant of the evolving statement is the s-from variant. It has an additional
component, and requires that the index type of the table must be a dda:

evolving dvar
s-from dtable until pred

in guard — (tind,tbase) end

This is also a filter-map statement, but the table it uses as input is not the dtable, but a
subset T'S(dtable) of the nodes of the dda. This subset is defined to be the set of nodes
n such that every r-path from n leads to a node in dtable and no node on this r-path,
including n, satisfies the predicate pred. An r-path is the sequence of nodes we traverse
by following the arcs in the r-direction. Referring to Figure 4, we may be given a table T1
with only node i as an index, and T2 with nodes h and ¢ as indices. Then T7'S(T1) = {i}
and T'S(T2) = {a,c,e, f, h,i}. If the predicate pred(dvar) defined a cut at dvar = e, all nodes
with r-paths via e would be removed, hence T'S'(T2) = {f, h,i}. The set T'S(dtable) may
be computed by the algorithm in Figure 7. It generates the set using the s connections,
hence the name s-from for this variant of the evolving statement.

A useful application of the s-from variant is to define a function that replicates a value
v a specified number of times. We use the fact that int is the carrier for a linear dda in its
definition. Remember that evolving iterates from the index values of input table, and that
a sequence with one element has 1 as its only index value (in the expression [n]).

replicate(v,n) = evolving i : int s-from [n] until i=n+1 in true — (i,v) end

If the expression thase in the s-from evolving statement contains a call to a constructive
recursive function f, we may compute the value of the function at each node as they
are added to the set T'S(dtable) by the algorithm in Figure 7. When a node is added
to T'S(dtable), the value of the function f at all the r-neighbors of that node have been
computed, and we need only compute the non-recursive computational aspect f with the
appropriate values of f as inputs. This is a very efficient way to compute a recursive
function, especially if the data dependency graph has many paths leading to the same
nodes (e.g. the butterfly in Figure 3), as the value of f at any one node will only be

11



TS(dtable) := { };
move the indices of dtable to the set D.Spy;
n = 0;
repeat
compute the set DS, 11 of all the neighbors in the s-direction of DS,
omitting the nodes where pred is satisfied;
move all nodes in DS,, that have all their r-neighbors in T'S(dtable) to T'S(dtable);
move the remaining nodes in DS,, to DS, 41;
n:=mn+1;

untilDS,, = { };

Figure 7: Imperative algorithm for determining the set 7'S(dtable)

computed once. The filter-map part of the evolving statement may be used to retain the
evaluated function at all interesting nodes during one expansion of the dda. This proves
the following theorem.

Theorem 2.3 (imperative code) A constructive recursive function f defined over a dda
may be translated into a recursion free loop program which evaluates the computational
aspect of f at most once for every node of the dda.

The constructive recursive function sum previously defined, defines a value at every node
of the butterfly dda. We have mentioned that the values at the bottom nodes are values
from the distributed table DV. The function SUM below defines the relation between the
input table DV and a distributed output table. The output table is just the function value
of sum at the top nodes of the butterfly. ok(DV) is a predicate that checks if size(DV) = 2**h,
where h is the height of the butterfly.

SUM : (tabledda,complex | Ok) - (tabledda,complex | Ok),

SUM(DV) = evolving d : dda
s-from DV until false
in not(canS(d,left)) — (d,sum(d))
end;

Notice the use of the predicate not(canS(d,left)) in the filter position in order to retain only
the sum values computed at the top nodes of the butterfly. To use this function on an input
table X : tablejn complex t0 compute an output table Y : tableint complex We would call:

Y = collect(SUM(distribute(X)));

The functions distribute and collect are defined below. The function readdress, which is used in
the definition of collect, moves all the nodes at the top of the butterfly to the corresponding
nodes at the bottom of the butterfly. B is the sequence of bottom nodes.

12



readdress : tablegda,complex — tablegda complex, —— lower the data to the bottom nodes
readdress(R) = evolving d : dda from R in true — (lower(d), lookup(DR,d)) end;
distribute : tablejnt.complex — tablegda complex, —— distribute X at the bottom nodes

distribute(X) = evolving i : int from B in true — (lookup(B,i), lookup(X,i)) end;

collect : tablegda,complex — tableint,complex, —— collect a distributed table into a sequence
collect(R) = let BR = readdress(R)
in evolving i : int
from B
in true — (i,lookup(BR,lookup(B,i)))
end
end;

2.5 The Fast Fourier Transform

Another constructive recursive function being defined over the butterfly data dependency
is the fast Fourier transform (FFT for short). It is a function from a 2" element complex
vector X to a 2" element complex vector. The FFT is a standard algorithm presented
in most text books on algorithm theory (see, e.g., Manber [14]). The function fft below
defines the essentials of the FF'T computation on a butterfly. It is defined in a context
with a butterfly dda with height h (see Figure 2). We have also used the complex constant
c= —2 -7 -1, where ¢ is the complex unit. exp is the complex exponentiation function.
The functions fst and snd return the first and second components of a pair of integer pairs,
respectively.

FFT : (tableqda complex | 0k) — (tablegda,complex | Ok)

FFT(DV) = let fft : dda — complex,
fft(d) = if canR(d,left) — lookup(DV,d)
| not canR(d,left) — exp(c-row/(2**col))-fft(r(d,right)) + fft(r(d,left))
fi where { row=fst(pro(d)), col=snd(pro(d)) }
in evolving d : dda
s-from DV until false
in not(canS(d,left)) — (d,fft(d))
end
end

The declaration of fft, the function from a node of the dda to a complex number, is local
to the declaration of FFT, the function from a distributed table to a distributed table.
The outer function provides the abstraction of a fast Fourier transform, defining the input
to the fft function, and collecting the interesting values being computed by fft. The inner
function fft defines the actual computations that have to be done. If we want to compute the
FFT of a sequence X : tablejnt complex; We Will have to distribute it over the bottom nodes of
the butterfly before calling the FF'T. The result is the distributed table DR : tablegda complex,
which will have to be collected to a sequence Y : tablejn complex if We do not want a distributed
result.

13



DR = FFT(evolving i : int from B in true — (lookup(B,i), lookup(X,reverse(i,h)) ) end);
Y = collect(DR);

B is the set of bottom nodes from the butterfly. The expression reverse(log(size(X),i)) is to
permute the input vector X correctly for the FFT implementation with the given butterfly.

3 Parallelizing the Programs

A parallel machine consists of a set of processing elements, PEs, and communication chan-
nels connecting the PEs. Together this forms a directed graph, which may be defined as
a dda. If the machine is a SIMD (Single Instruction, Multiple Data) architecture, we may
take a space-time view of a parallel program executing on it: it performs computational
steps interspersed with blocks of communications. The process at PE p at time-step t may
send a message to the process at PE ¢ at time-step t + 1 provided there is a communi-
cation channel from processor p to processor ¢q. Each processor at every time-step thus
becomes a node in a directed graph, and the communication channels between the PEs
become directed arcs, from one time-step to the next. This also forms a directed graph,
and this special variant of a dda will be called a space-time algebra. In Haveraaen [11] it is
shown that this model also is useful for other parallel machines such as a MIMD (Multiple
Instruction, Multiple Data).

Definition 3.1 [sta] A space-time algebra is a data dependency algebra with the following
restrictions:

e the carrier for the nodes of an sta is (a subset of) the Cartesian product of the
processing elements of a parallel machine and a time counter, usually the integers,

e the carrier for the directions are the channels going out from and leading into the
processors, including a channel for in-memory communication, allowing a processor
to retain data in memory between computations, and

e the r and s functions define allowable communications from one time-step to the next.
(I

An embedding of a program’s dda in a parallel machine’s sta (see Miranker & Winkler
[16]) is a mapping of dda nodes to sta nodes, and dda arcs to sta paths. In order to express
the embedding in a convenient way, we will generate the transitive closure of a space-time
algebra.

Definition 3.2 [tca] The trancitive closure algebra is a data dependency algebra generated
from a space-time algebra in the following way

e the carrier for the nodes of a tca is the nodes of the sta,

e the carrier for the directions are sequences of the channels of the sta, and

14



signature S
parameters
sort sta, channel
parameters
sort int, tablejn channel
defines
operations
canRec:sta * tablejnt channel — bool;
rec :sta * tablejnt channel | CanRec — sta;
dirSen :sta * tableint channel | canRec — tableint channel;
canSen :sta * tablejnt channel — bool;
sen :sta * tablejnt channel | canSen — sta;
dirRec :sta * tablejnt channel | canSen — tableint channel;
end

Figure 8: Signature S for the transitive closure of a space-time algebra. The directions
of this graph are defined by sequences of channels, a channel is a direction in the space-time
algebra. The tca is a data dependency algebra. The names canRec and canSen correspond
to canR and canS respectively, the function names rec and sen correspond to the r and
s functions, and the function names dirSen and dirRec correspond to the dirS and dirR
functions.

e the r and s functions define finite paths in the sta.

Theorem 3.3 (embedding) The embedding of a dda in the space-time of a parallel ma-
chine may be expressed as an implementation of the dda in a sta’s tca.

Proof Using the sta nodes as carrier for the dda nodes will map the nodes of the dda
to sta nodes. The carrier for the directions of the dda will be sequences of channels of the
sta, so that arcs between nodes of the dda will be mapped onto paths in the sta by the
code for the dda functions. O

We are now able to formulate and prove the main theorem of this paper.

Theorem 3.4 (parallel implementation) The embedding of a dda in the space-time of
a parallel machine defines the execution of a constructive recursive function f distributed
in the space-time of the parallel machine.

Proof The embedding assigns a space-time coordinate to the nodes p of the dda, so
each call of the computational aspect f' of f at node p assigns a space-time coordinate to
this computation. Moreover, each arc of the dda is mapped onto a path in the space-time
of the parallel machine, hence all sends (as described in the proof of the imperative code
theorem 2.3) will be on physical links in the parallel machine. O

15



Figure 9: The hypercube connections drawn for a hypercube of dimension 4. Each
PE has 4 channels numbered 1 through 4. Channels with the same number are drawn
parallel to each other.

The theorem tells us that given a constructive recursive program, and an implementation of
its data dependencies in the tca of a parallel machine, we may generate parallel, imperative
code for this machine. Yet no part of the language has any reference to the concepts of
process nor communication. The only notions we are working with are dependencies and
implementations. Since we are allocating each data item on a different processor, this
method of programming is best suited for programming massively parallel machines.

Our approach to parallel programming also allows us to validate the correctness of our
implementations. The implementations of a dda for different parallel machines must all be
isomorphic, and this may be validated whenever a new embedding is implemented.

A table distributed over a dda will become a distributed data structure on the parallel
machine if the dda is embedded in the machine’s sta. Thus elements of the table will be
placed on specific processors at specific time-steps of the computation. This also distributes
the computation of expressions like SUM(readdress(FFT(DX))) where DX is an appropriately
distributed table. Since tca’s are used when we implement a dda for a parallel machine,
we will use the signature S defined in Figure 8 when referring to tca’s.

The following subsections contain examples of embeddings. Each embedding allows
both the SUM and the FFT functions to be executed distributed over the processors of a
parallel machine. In many cases it will be possible to generate these embeddings automat-
ically by applying the methods and tools developed for this purpose (see for instance Chen
& al [5]). Once generated, these embeddings may be stored in a library of embeddings
together with hand coded ones.

3.1 The Butterfly embedded in a Hypercube Computer

Many parallel computers, e.g., Intel’s iPSC-2 or Thinking Machine’s Connection Machine
CM-2, have processors connected in a hypercube, or boolean n-cube, network. A hypercube

16



specification Hypercube

parameters
operations
h:— int; —— dimension of hypercube
defines
sort sta —— the set of space-time indices {(s,t) ¢ PE x Z}
—— the channel carrier is the set of directions {deZ | 0 < d < h}
operations

—— operations as in signature D
canR :sta * int — bool;

r :sta * int | canR — sta;
dirS :sta *int | canR — int;
canS :sta * int — bool;
s :sta * int | canS — sta;
dirR :sta *int | canS — int;
—— operations specific for this space-time algebra
time :sta — int; —— extract a logical time component
space :sta — int; —— extract a logical space component
retime : sta — sta; —— change the logical time component to 0
teut  :— tableint sta; —— a time cut: all PEs at time-step 0
equations
—— the axioms of a dda must be satisfied. In addition we have:
canR(p, ) O<=i<=h;
canS(p,i) =0<=i<=h;
dirS(p,i) =i
dirR(p,i) =i
time(r(p,d)) = time(p)-1;
time(s(p,d)) =time(p)+1;
time(retime(p)) =0;
time(lookup(tcut,i)) =0;
0 <= space(p) < 2*¥*h=tru
space(r(p,d)) =co mplement(space( ),d-1);
space(s(p,d)) = space(r(p,d));
space(retlme(p)):s ce(p);
space(lookup(tcut,i)) =

end

Figure 10: The specification Hypercube for the sta of a hypercube of dimension h, i.e., a
machine with 2" processors. Note that the algebra for the Hypercube is defined by the
physical hardware, but the projection operations time and space will interact with the
movement functions r and s in the way specified in the axioms.

17




implementation BbyH

parameters
operations
h : — int; —— height of butterfly and dimension of hypercube
parameters
—— the tca of the hypercube and the special hypercube sta operations are parameters
defines
—— defines exactly the signature for the butterfly dda
local
operations
ddinv:sta — bool; —— datainvariant for the dda
drinv :int — bool; —— datainvariant for dir
toch :int * int * dir — int; —— function to find the channel for a send:
code
ddinv(p) = (0<=time(p)<=h);
dda = sta | ddinv; —— the “butterfly subset” of the sta nodes
drinv(n) = (0<=n<=1)
dir = int | drinv; —— the set {0,1}
left =0;
right =1;

toch(s,t,d) = if (d = digit(s,t)) — 0

| (d<>digit(s,t)) — t+1

fi; —— the time index t determines channel number
canR(p, d) = (0 < time(p)); —— there are no dda nodes below row 0
canS(p, d) = (time(p) < h); —— there are no dda nodes above row h
r(p,d) = rec(p,[toch(space(p),time(p)-1,d)]);
s(p,d) = sen(p,[toch(space(p),time(p),d)]);
dirS(p, d) = if d = digit(space(p),time(p)-1) — d

| d<>digit(space(p),time(p)-1) — 1-d

fi;
dirR(p, d) = if d = digit(space(p),time(p)) — d

| d<>digit(space(p),time(p)) — 1-d

fi;
lower(p) = retime(p);
B = evolving i : int from tcut in true — (i,lookup(tcut,i)) end;

end

Figure 11: The code defining the butterfly embedded in the hypercube space-time, i.e.,
a definition of how to execute programs with butterfly data dependencies distributed
on hypercubes. No programs based on butterfly (see Figure 2) will need to be modified
when switching to this butterfly implementation.

18




A AN

N N R
WAESIT NN N\ N\

Jﬂﬁ‘\ N, ‘w \/ ﬂﬁ\ m‘ ‘wdwﬁﬂ 4@ ‘wdwﬁﬂ 4‘
WVUDOOOCOGDDOUA

T S S
AR AN G el

/\ A
W/ 14\ 4&!«\ ,44.74\ 4.&.!«\ /«,4.’4\ 4&4& 444.’4\
VAL AN O

R4
)N AN

-

s

/‘ﬂ\

o
<]

RN

<

N>
<

4\;? SN,

\)
S T
p%«.%%ow%«..»«»«%w\,.%m»%

S
IS

]
RS
2
22
=)

<\
)

[ =
=
</

7

| >

>

step also is a node
-dimensional mesh

to the end of the row (or

and column)

(

72| e Sy | N

==

=<1
<]

\»4\
=l
=<l
-——

ALY

%

<Z]
Nz

2

)

S

-~
o>

AN

2
<

< |

=]

=

-
—

<

)

>

S

<

p=

DS

1\
b3
IS
I
=
5

<1

N
=g

-
=\
S)

O

<

<<

D%

<J
A o
-
Z
1S
p

=P

>
\A\g

Z ANVZ4S VAN AATARYLY

OOMUDTOUUO

IO XN A
e\

Figure 12: The hypercube space-time pattern drawn for a hypercube of dimension 4.

The figure also shows an embedding of the butterfly of height 4 in the hypercube. All
hypercube nodes are butterfly nodes (filled circles), and the hypercube paths that are

butterfly arcs have been thickened.

Each processor has n 4+ 1 communication channels

the in-memory channel has number 0. Figure 9 gives a schematic sketch of a hypercube

(including the in-memory channel). Physical connections are numbered 1 through n, while
connected parallel machine.

of dimension n, has 2" processors.

The hypercube sta (see Figure 10) has some operations in addition to the basic dda
functions. These include space and time projection functions, which allow us to form useful

expressions when defining the embedding. The figure also provides some axioms specifying

the new operations.

The embedding of the butterfly on the hypercube (in Figure 11, illustrated in Figure 12)
maps each node at a level of the butterfly to a node in the hypercube at the same time-step.

implementation is efficient as we have h time steps where h is the height of the butterfly,

i.e., it is time optimal. Since every node of the hypercube at every time-

The different rows of the butterfly are simulated using time in the hypercube. The BbyH
of the butterfly,

19

this implementation is also space optimal.
simplify this by defining a linear array (1-dimensional mesh, see Figure 13), and implement

column, respectively). MP-2 also has diagonal connections with a toroidal wrap. We will

3.2 The Butterfly embedded in a Linear Array
A machine like the MasPar MP-2 has its processors connected in a 2

with circular connections from the start of every row



Figure 13: The linear array connections drawn for a linear array with 16 PEs. The
direction W is towards the left, and the direction E towards the right.

the butterfly on it. The extension to two-dimensional meshes should be straight forward,
although the technical details will be much more involved.

The specification Linear (14) has a sort channel with three distinguished constants naming
the communication ports of the linear array (E, W and 0), and the integer ¢ standing
for the number of processor nodes in the array. The communication port O names the
communication of a datum by retaining it in memory. Linear has the same additional
operations as Hypercube, however the axioms for the space index manipulations are very
different, reflecting the difference in architecture.

In the embedding of the butterfly on the linear array (in Figure 15, illustrated in Fig-
ure 16), many of the sta nodes are not part of the embedding. This is because the diagonal
connections in the butterfly has to pass through several nodes. This wastes computational
resources, and is a drawback of the linear array when compared to the hypercube. We
have to skip 2' — 1 time steps when moving in the send direction of the graph, where i is
the row number. This is encoded using the base 2 (truncating) log : int —int function in the
data invariant ddinv. The time consumption for this embedding is exponential in h, but
h is logarithmic in the size of the input vector. Hence, the SUM and FFT algorithms will
execute in linear time with respect to the size of the input vector.

If the linear array had a different set of connections, we might have been able to imple-
ment the butterfly in a pattern resembling the perfect shuffle (shuffle exchange network)
and thus reducing the time complexity. The space requirement will always be linear in
terms of the input vector, as required by the definition of the butterfly.

4 Comparisons with other approaches

We will compare our approach to parallel programming to the functional approaches of
Chen & al, Cyras & al, Trishina, and Tucker & Zucker, and the imperative approach of
Braunl. Comparing the constructive recursive approach to the Crystal approach (Chen &
al [5]), we find that a Crystal function f : D—t is expressed in terms of a specific model D
for the dda. Instead of abstracting over this model as we do, they use the fact that there
is an isomorphism ¢ : D—F from the model D to the embedding F of D in the target
machine’s space-time algebra ST. The isomorphism is called a reshape morphism, since it
reshapes the domain D into £. The reshape morphism is used to reformulate the function

f into the function f : ST—t, defined by the equation f = f o g~!, where ¢! is the inverse

20



specification Linear

parameters
operations
¢:— int; —— number of processors
defines
sort sta, —— the set of space-time indices {(s,t)e PE x Z}
channel —— the channel is the set of directions {O, E, W}
operations

—— operations as in signature D:
canR :sta * channel — bool;
r :sta * channel | canR — sta;

dirS :sta * channel | canR — channel;

canS :sta * channel — bool;

s :sta * channel | canS — sta;

dirR :sta * channel | canS — channel;

—— operations specific for this space-time algebra:

(0] : — channel; —— direction origin

E : — channel; —— direction east

W : — channel; —— direction west

time :sta — int; —— extract a logical time component

space :sta — int; —— extract a logical space component

retime : sta — sta; —— change the logical time component to 0

tcut  :— tablejnt sta; —— a time cut: all PEs at time-step 0
equations

—— the axioms of a dda must be satisfied. In addition we have:
canR(p,W) =space(p) > 0;
canR(p,0) =true;

)
canR(p,E) =space(p) < c-1;
canS(p,i) =canR(p,i);
dirS(p,W)=E
dirS(p,0)=0
dirS(p,E) =W
dirR(p,i) =dirS(p.i);
time(r(p,d)) = time(p)-1;
time(s(p.d)) = time(p)-+1;
tlme(retlme( ))=0;
time(lookup(tcut,i)) =0;

0 <= space(p) < c=tru
space(r(p,W)) =sp ace(p) 1;
space(r(p.0)) = space(p);
space(r(p,E)) = space(p)+1;

space(retime(p )):sp e(p);
space(lookup(tcut,i)) =i-1;

end

Figure 14: The specification Linear for the sta of a linear array with ¢ processors. Note
that the algebra for Linear is defined by the physical hardware, but the projection opera-
tions time and space will interact with the movement functions r and s in the way specified
in the axioms.

21




implementation BbylL

parameters
operations
h : — int; —— height of butterfly — we must have that ¢ = 2**h
parameters
—— the tca of the linear array and the special linear array sta operations are parameters
defines
—— defines exactly the signature for the butterfly dda
local
operations
ddinv:sta — bool; —— datainvariant for the dda
drinv :int — bool —— datainvariant for dir
rech :int * int * dir — tablejn; channel; —— the sequence of channels for a receive
sech :int * int * dir — tableist channel —— the sequence of channels for a send
code

ddinv(p) = (0<=time(p)<=2%*h) and (0<=space(p)<2**h)
and (2**log(time(p)+1)=time(p)+1); —— log is with base 2

dda = sta | ddinv; —— the butterfly subset of the sta nodes
drinv(n) = (0 <=n<=1),

dir = int | drinv; —— the set {0,1}

left =0;

right =1;

rech(s,t,d) = if d=digit(s,log(t+1)-1) — replicate(O,(t+1)/2)
| d<digit(s,log(t+1)-1) — replicate(E,(t+1)/2)
| d>digit(s,log(t+1)-1) — replicate(W,(t+1)/2)
fi;
sech(s,t,d) = if d=digit(s,log(t+1)) — replicate(O,t+1)
| d<digit(s,log(t+1)) — replicate(W,t+1)
| d>digit(s,log(t+1)) — replicate(E,t+1)
fi;
(p, d) = (0 < time(p)); —— there are no dda nodes below row 0
canS(p, d) = (time(p) < 2**h); —— there are no dda nodes above row 2"
) = rec(p,rech(space(p),time(p).d));
s(p,d) = sen(p,sech(space(p),time(p),d));
dirS(p, d) = if d = digit(space(p),log(time(p)+1)-1) — d
| d<>digit(space(p),log(time(p)+1)-1) — 1-d
fi;
dirR(p, d) = if d = digit(space(p),log(time(p)+1)) — d
| d<>digit(space(p),log(time(p)+1)) — 1-d

fi;
lower(p) = retime(p);
B = evolving i : int from cut in true — (i,lookup(cut,i)) end;

end

Figure 15: The code defining the butterfly embedded in the linear array space-time, i.e.,
a definition of how to execute programs with butterfly data dependencies distributed
on linear arrays. No programs based on butterfly (see Figure 2) will need to be modified
when switching to this butterfly implementation.

22




}Qﬂ§

\
CORN
q???
PP

/
o

i
i
i

“w,

rray space-time pattern
o shows an embedding of the butterfly of height 4 in the linear
nodes that are butterfly nodes are filled, and the linear array

. X ¢ 9]
‘00 X

M

L1000
“o%g

[
o

X X

Q
¢ 9] I q

‘ \
’..

Yy
i
Wi
bt |
QNN
OO
AN
AR
v}N}

WA

i

3
\
s
\

drawn for a linear array

with 16 pro




function of g. The reshape morphisms g and ¢~ may be programmer-supplied, but in
many cases it is possible to automatically derive them. This is similar to the possibility of
automatic generation of space-time embeddings of dda’s in the Sapphire approach.

Similar results have been achieved by Cyras & al (see [7] or [10]). They restrict their
attention to dda’s that are regular grid structures, and do not define the s-functions, only
the r-functions, in their code. The s-function is always derivable due to the simple structure
of the base domains. A detailed comparison is presented in Haveraaen and Cyras [8].
Trishina [19] generates Occam programs from reccurrence equations over discrete lattice
structures by similar automatic transformations.

Tucker & Zucker[20] have developed a general theory on the recursion over structures.
Their parallel work, however, is oriented towards structures with space-time properties.
This will restrict their work to the subclass of space-time algebras of our approach.

Yet another approach related to ours is that of Parallaxis (Braunl [3]). This is an
imperative programming language for SIMD machines based on Modula-2. In Parallaxis
programs are essentially defined over dda’s (virtual machine in their terminology) explicitly
defined by the programmer. Since the concept is based on SIMD computing, the dda’s are
restricted to the sta subclass of data dependencies. The Parallaxis compiler is intended
to automatically derive a mapping from the user-specified dda to the sta of the target
machine.

5 Summary

We have shown that algorithms may be partitioned in a computational part and a data
dependency part, and that these may be defined as separate pieces of program text. We
have chosen to define the first as a constructive recursive function, the latter as a data
dependency algebra. Examples show that the same constructive recursive function may
be defined over different dda’s, and that several functions may utilize the same dda. The
first case with the sum function which works with both trees and butterflies, the other case
with the sum and fft functions that both use the butterfly. More important is the fact that
different definitions of one data dependency algebra is possible. A special implementation
of a dda, in the form of a machine specific space-time algebra, distributes the computation
on a parallel machine. This distribution is explicitly controlled by the programmer, yet
completely eliminates specification of tasks and other low-level constructs. Since a dda,
and hence its embedding on a particular machine, is reusable for many algorithms, this
seems like a useful approach to the programming of parallel machines. In many cases these
embeddings may be automatically derived, and stored in the form of a module for later
use. This is in contrast with many other techniques for parallel functional programming
(see Szymanski [18]) which have to derive this information at every compilation.

The space-time algebras intuitively capture the behavior of a SIMD machine, but we
have shown (see Haveraaen [11]) that it also carries over to MIMD (multiple instruction
multiple data) computers. Due to the fine granularity of the distribution of data and com-
putations this approach seems ideal for massively parallel machines. By combining several

24



logical processors in one physical processor, this approach may be useful for machines with
coarser granularity.

We are currently investigating this approach by implementing examples in Sapphire.
Andersson [2] has among other problems implemented several versions of LU decomposition
with pivoting. We are also developing compilers for several parallel machine architectures.

Acknowledgements

Much of this work was conceived during the author’s sabbatical at Yale University, New
Haven, Connecticut, in 1989. Thanks especially to Marina Chen for inviting me and
Young-il Choo for our fruitful discussions.

References

[1] The Programming Language Ada. Reference Manual. American National Standards
Institute, ANSI/MIL-STD-1815A-1983.1X. Springer-Verlag, Lecture Notes in Com-
puter Science 155, 1983.

[2] T. Andersson: Safir, analyse og programmering av dataavhengigheter pa parallelle
arkitekturer. Thesis, the Department of informatics, University of Bergen, 1993.

[3] T. Braunl: Structured SIMD Programming in Parallaxis. Journal on Structured Pro-
grammang, vol. 10, no.2, July 1989, pp. 121-132

[4] L. Cardelli and P. Wegner: On understanding Types, Data Abstraction, and Poly-
morphism. Computing Surveys, Dec. 1985.

[5] M. Chen, Y. Choo and J. Li: Crystal: Theory and Pragmatics of Generating Efficient
Parallel Code. In B.K. Szymanski (ed.): Parallel Functional Languages and Compilers,
ACM Press, New York / Addison Wesley, Reading, Mass., 1991, pp. 255-308.

[6] P.M. Cohn: Universal Algebra. D. Reidel, Dordrecht, 1981. ISBN 90-277-1213-1.

[7] V. Cyras: Loop Program Synthesis Using Array Traversing Modules. In Haveraaen
& Meldal (ed.): Proc. of 4th Nordic Workshop on Program Correctness, University of
Bergen Informatics t.r. 78., 1993.

8] V. Cyras & M. Haveraaen: Modular programming of recurrencies: a Comparison of
Two Approaches. Informatica, 1995, Vol. 6 no. 4, pp. 397-444.

9] A.J. Field and P.G. Harrison: Functional Programming. Addison Wesley, Wokingham
UK, 1988. ISBN 0-201-19249-7.

[10] S.N.Greshnev, E.Z.Lyubimskii, V.A.Chiras. Synthesis of programs on data structures.
Programming and Computer Software, Vol.11, No.5, 1985, pp.282-291. (translated
from Programmirovanie, No.5, pp.44-54, September-October, 1985).

25



[11]

[12]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

M. Haveraaen: Comparing Some Approaches to Programming Distributed Memory
Machines. Proceedings of the 6th Distributed Memory Computing Conference, DMCCG,
IEEE 1991, pp. 222-227.

M. Haveraaen: How to Create Parallel Programs without Knowing it. In Meldal &
Haveraaen: Proceedings of the 4th Nordic Workshop on Program Correctness, Reports
in Informatics no. 78, Department of Informatics, University of Bergen, Norway, March

1993, pp. 165-176.

P. Hudak: Para-functional Programming in Haskell. In B.K. Szymanski (ed.): Par-
allel Functional Languages and Compilers, ACM Press, New York / Addison Wesley,
Reading, Mass., 1991, pp. 159-196.

U. Manber: Introduction to Algorithms - a Creative Approach. Addison Wesley, Read-
ing Massachusetts USA, 1989. ISBN 0-201-12037-2.

D. Michie: “Memo” functions and machine learning. Nature vol 218, 1968, pp. 19-22.

W.L. Miranker & A. Winkler: Spacetime Representations of Computational Struc-
tures. Computing vol 32, 1983, pp. 93-114.

V. Sarkar: PTRAN: The IBM Parallel Translation System. In B.K. Szymanski (ed.):
Parallel Functional Languages and Compilers, ACM Press, New York / Addison Wes-
ley, Reading, Mass., 1991, pp. 309-391.

B.K. Szymanski (ed.): Parallel Functional Languages and Compilers, ACM Press,
New York / Addison Wesley, Reading, Mass., 1991.

E. Trishina: Development of Occam Programs by Stepwise Algebraic Transformations
of Affine Recurrence Equations. In Haveraaen & Meldal (ed.): Proc. of 4th Nordic
Workshop on Program Correctness, University of Bergen Informatics t.r. 78., 1993.

J.V. Tucker & J.I. Zucker: Program Correctness over Abstract Data Types, with Error-
State Semantics, North-Holland, Amsterdam, 1988.

M. Wirsing: Algebraic Specification. In J. van Leeuwen (ed.): Handbook of Theoret-
ical Computer Science, vol. B: Formal Models and Semantics, Elsevier/MIT Press,
Amsterdam 1990, pp. 675-788.

26



