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Abstract. Software itself may be considered a formal structure and may besubject to mathematical analysis. This leads to a discipline of formal softwareengineering (which is not necessarily the same as the use of formal methods insoftware engineering), where a formal understanding of what software componentsare and how they may interact is used to engineer both the components themselvesand their organisation. A strategy is using the concepts that are suited for organ-ising the problem domain itself to organise the software as well. In this paper weapply this idea in the development of computational modelling software, in partic-ular in the development of a family of related programs for simulation of elasticwave propagation in earth materials. We also discuss some data on the technique'se�ectiveness.
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1. Introduction
Formal methods and reuse of software components has for a long time beenacknowledged as important for improvement of software quality and reduc-tion of software cost. Investigating the formal aspects of software may alsolead to signi�cant improvements in these areas. Such a focus may be termedformal software engineering. Formal software engineering is not the same as
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the use of formal methods in software engineering. Rather it is a focus onthe formal, mathematical side of software artifacts, and using this insightin the engineering of software products. Following the tradition of mathe-matics, applying such an insight does not require the use of formal methods.Informal arguments su�ce, as long as they are rooted in a precise semanticalunderstanding. The approach to formal software engineering used in thispaper is based on the algebraic \toolbox", a brief overview is given by Ehriget al. [1998]. This ranges from universal algebra, suited to investigate thelanguage of the problem domain, to category theory, suited to discuss designprinciples for software architecture.When designing computer programs for some problem domain, one is atleast faced with three problems: (1) what are the concepts that have to beused for the construction of software in this domain, (2) what is a good pro-gramming notation for these concepts, and (3) how can they be implementedas software code. This has spawned work in areas like domain speci�c em-bedded languages (DSEL) [Hudak 1996] and software architectures [Bidoit etal. 1999]. A domain speci�c language (DSL) provides syntax for the conceptsof a problem domain, supporting the expression of problems and solutionsfor that domain. A DSEL is the merging of a DSL with a general purposeprogramming language, ensuring full algorithmic and data structure decla-ration capabilities, but at the cost of constraints on the linguistic elementswe may use in the DSL. Software architecture is the organisation of softwareinto packages and modules and how to combine these in order to build spe-ci�c software. Ideally software should be decomposed in such a way thatdi�erent considerations may be con�ned to separate modules. Also, modulesthat provide alternative implementations of a concept should be easily inter-changeable. This requires an extensive analysis of both the problem domainand of the software structuring methodologies available. Doing this well givesa very 
exible software structure, easy to tailor for speci�c needs, as well asadapt to changing requirements { a characteristic of mature software designsuch as described by Racko [1995].Domain speci�c languages are abundant in all application developmenttasks. Very often the DSL is \invisible", in the sense that it was embeddedalready in the design of the programming language we are using. Then weoften do not relate consciously towards which DSL is involved. In the 1960'sand 1970's building domain concepts into a programming language was thecommon way of providing DSLs. With the advent of advanced modularisa-tion concepts such as abstract data types and object orientation, DSELs maynow be provided as separate libraries. Thus a programming language maybe adapted to any domain by including the appropriate software librariesfor that domain. Often a domain may have several distinct, but coexisting,domain speci�c languages. Then it becomes very important to be aware ofthis, and be able to make conscious decisions about which one to use. Inthe worst case, it may be bene�cial to develop an alternative DSL { a DSLthat may have better properties for expressing simple solutions to complexproblems.
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Our idea for a software process model for developing and implementing aDSEL is based on the following steps. As for any proper life cycle model itneeds to be amended with additional feedback and control loops, similar tothe way the original waterfall software process model by Royce [1970] hasbeen amended, e.g., by Boehm [1976].(1) Establish an appropriate DSL by de�ning important properties of theproblem domain concepts. Using algebraic speci�cations for this weidentify sorts and functions to express application data and algorithms.It also nails down the semantics of the DSL.
(2) Validate the suggested DSL by checking its

� usefulness : formulate problems using the DSL, embed the DSLinto a programming language and design solutions to the problemsusing the resulting DSEL. (This is mostly a test of the conceptsthemselves, but may also form part of an application developmentprocess, namely the functional requirements and high level designsteps, that may be continued independently of the DSEL life cycleprocess.)� implementability : design data structures for the sorts and al-gorithms for the functions. The design should be veri�ed by show-ing the relationship between the code and the speci�ed concepts.(Note that this only will provide one of many possible designs, eachdesign with di�erent accuracy and resource usage characteristics {but then one such design is su�cient to show the implementabilityof the concepts, though it may not be the implementation we endup using.)
(3) Decide the architecture of the software library that provides the DSLconcepts. This requires grouping the sorts and functions for softwarecomponents, studying their interplay and trying to parameterise thecomponents as much as possible. The aim is to reduce the numberof components and the software complexity of each by focusing onreusability. (Software complexity is a measure of the di�culty and costof writing the software. It does not relate to the resource usage atruntime which is the subject of traditional complexity theory.) Thisgenerally increases the versatility of the components, and simpli�es thelibrary itself. It may also greatly reduce the work needed to implementthe full library. Categorical reasoning is useful for this purpose.
(4) Design and implement a prototype of the software library by coding thedata structures and algorithms in a suitable programming language.
(5) Maintain the library by adding variants of the components, as well ascorrecting (unavoidable) errors. Variants may be demanded by appli-cation program development in order to meet e�ciency requirements.The �rst of these steps identi�es the concepts and �nds a notation for these.Once the speci�cations are in place, it is possible to experiment with thenotation and concepts to design programs solving actual problems. This al-lows early checking of the usefulness of the concepts. An adjustment of the
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concepts and notation at this stage is comparatively cheap. We also haveto check that the concepts are implementable before they are meaningful.Thus we have both outward (usability) and inward (implementability) re-quirements on a DSL in the validation of its speci�cation. When specifyingthe domain concepts we develop a DSL, while we transform it to a DSELwhen designing solutions.We �rmly believe that the development of a DSL and its implementationas a software library is a separate activity from application program develop-ment, and that they have di�erent software life cycle models. An applicationsoftware process model is typically based on the waterfall life cycle model ofRoyce [1970] with steps: requirements speci�cation, design, validation of thedesign with respect to requirements, coding and maintenance. We emphasisethe use of a DSL in the problem formulation (requirements speci�cation) andthe use of the DSEL in formulating and implementing the solution. Whilean application program is developed to solve a speci�c problem for one cus-tomer, a DSEL is to serve many application developers. Thus �nding theright domain concepts is crucial, and devising a 
exible library architectureis important, for the success of both the library development and the ap-plication development. Of course one will never in practice proceed alongthe sketched steps of the life cycle models in linear order. A more re
ectedunderstanding of a life cycle model will introduce all kinds of feedback loops,quality assurance steps, detailed guidelines on how to approach standardproblems, etc. Such issues are investigated by the software process com-munity, and is captured in models like that of Paulk et al. [1993]. The basicsteps we have identi�ed are still central in the enhanced models.This paper is devoted to a case study developed according to the ideasabove. The case study is taken from the area of computational modelling, inthe typical form of a physical phenomenon described by a partial di�erentialequation (PDE). Computational modelling of real world phenomena is be-coming an important research tool in the sciences. Currently this is hamperedby the time and e�ort needed to develop good computational models, andthe time and cost needed to port such models onto a high performance com-puter. We ascribe much of these costs to the use of a less than optimal DSLfor conventional numerical software, namely that of indexed array structures,as exempli�ed by Fortran-66 [1966]. A conventional solver for a PDE embod-ies the discretisation method, coordinate system, as well as the actual solveralgorithm. Typically such software only handles the limited set of problemsit was developed for, and can not easily be adapted to related phenomena oraccount for change of numerical discretisation methods. In many ways sucha solver becomes a legacy code for the group that developed it: being theirmain tool for success, but also limiting what problems they may tackle.Instead we want to develop an alternative DSL, namely that of coordin-ate free numerics, for this domain. This DSL captures more of the abstractconcepts of the underlying mathematics, and may therefore blend more nat-urally with modern notions of software structure. This work started withthe algebraic speci�cation of concepts from partial di�erential equations by
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Haveraaen et al. [1992]. Here we continue through the remaining steps of thethe development process and we sketch the algebraic tools we have chosento aid us through this. We also measure the e�ectiveness of this approach tosoftware development by implementing a collection of application programsfor the acoustic imaging of small and large scale geological objects, problemsimportant in oil exploration. This problem is challenging, in that the sameset of fundamental PDEs has to be formulated for various kinds of exper-imental setups, e.g., in cartesian or cylindrical (borehole) coordinates, andwith various kinds of geophysical models and boundary conditions.The choice of computational modelling as our domain was motivated inpart by its general importance, but also since this is an area to a large extentneglected by the software methodology community. Showing the relevanceof software engineering methodology to this area may then both open it upfor more research from the software community, and may also bene�t thepractitioners in the computational modelling domain. The lack of familiaritywith this area for most software engineers has made us include materialdescribing more of the domain background than normal for case studies. Wefeel this may be needed, in order for the reader to appreciate the complexity ofthis kind of software and to gain an insight in why the proposed methodologyis bene�cial for an area which has been self-su�cient for much of the timesince the early days of computing.This paper is organised as follows: Section 2 sketches the use of alge-braic techniques for investigating domain speci�c concepts and de�ning thecoordinate free numerics DSL. Then we sketch the problems we will use asexamples, both in order to validate the DSL, and in order to indicate thepotential of this approach. In Section 4 we discuss the software architecturefor the DSL and describe the Sophus software library which implements theDSL. Section 5 presents how the sample problems were solved, how a versionof the DSL library adapted for the problems at hand were developed, and alsopresents additional variations of the problem and solutions to these. Then, inSection 6, we discuss the results achieved by following this approach. Finallywe summarise our �ndings in Section 7.

2. Developing the domain speci�c language
There is a long tradition in looking at software as a formal entity. This spansfrom work in programming language semantics [Floyd 1967], via axiomaticformalisms [Hoare 1972] and systematic development techniques [Dijkstra1976] to development by program re�nement [Back 1981] and proof tools[Manna and Waldinger 1980]. One crucial observation is that a programtext can be moved between computers (and compilers), but that the resultscomputed may depend on the computer (a problem which is gradually re-duced through standardisation). This leads to an acknowledgement of thedistinction between syntax and semantics. Such a distinction also existsin the mathematical discipline of universal algebra, which originated with



246 M. HAVERAAEN, H.A. FRIIS, T.A. JOHANSEN
Whitehead [1898] and had matured by the 1960's [Cohn 1965, Gr�atzer 1968].In universal algebra the syntactic entities are called a signature and the se-mantics a model for that signature. It took till the late 1970's till universalalgebra, in the form of many-sorted universal algebra, was employed in com-puter science [Goguen et al. 1975, Guttag and Horning 1978]. By that timecategory theory [MacLane 1971] was also making an in
uence in how to struc-ture mathematical concepts. Now universal algebra and category theory isused together in the form of algebraic development methodologies [Ehrig etal. 1998].
2.1 Domain investigation tools: algebraic speci�cations
A signature � declares a set of sort names s1; : : : ; sn, and function symbolsf : si1 ; : : : ; sim ! sim+1 , where si1 ; si2 ; : : : ; sim for m � 0 are the argumentsorts and sim+1 is the result sort (including the case m = 0 for a constant).Obviously we may think of a sort as a type name or a class name in pro-gramming language terms. A function symbol corresponds to a side-e�ectfree function or typed method. A procedure or method that changes its en-vironment (has side-e�ects) can be decomposed into one or more side-e�ectfree functions and explicit assignments to program variables. So we maytreat a signature as idealised declarations in a program.A model A for a signature � de�nes for each sort s of � a mathematicalset A(s), called the carrier, and for each function symbol f : si1 ; : : : ; sim !sim+1 , a mathematical function A(f) : A(si1)� � � ��A(sim)! A(sim+1). Ina programming context we may let A(s) be a data structure, perhaps coupledwith a data invariant, which de�nes the set of values that may be stored inthe data structure, or the subset thereof that satis�es the data invariant.Likewise, A(f) may denote an algorithm, which de�nes a computable func-tion from its argument data values to its result data values.A speci�cation restricts the class of allowable models for a signature. Al-gebraic speci�cations only focuses on the properties that we want satis�ed,rather than devising speci�c constructions of models. Thus it is a rather ab-stract approach, but permits both mathematical models and programminglanguage oriented models. The CASL speci�cation language [Mosses 1997] isan attempt to bring together and standardise various approaches to algebraicspeci�cations. Given a signature � and a speci�cation, we may ask whetheran implementation satis�es the speci�cation. Morris [1973] has addressed thisproblem in a clear way and proposed it as a software development technique.Meyer [1991] presents this technique as programming by contract. Object-ori-ented programming languages have the modularisation mechanisms neededfor programming by contract, but not all provide direct support for it.
2.2 Domain concepts for partial di�erential equations
The computational modelling domain is that of mathematics, typically the�eld of partial di�erential equations (PDEs).
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If we start investigating the problem domain concepts using algebraic meth-ods, we will of course rediscover the basic structures of algebra (the inves-tigation and generalisation of which led Whitehead [1898] to the discoveryof universal algebra): monoid, group, ring, �eld, vector space, linear map-pings (matrices), tensors (which generalise rings, �elds, vectors, matrices and(multi)linear mappings), etc. Haveraaen et al. [1992] specify many of theseconcepts in a start at analysing this problem domain using algebraic softwaremethodologies. As an example, a ring R has binary operations + (addition),� (subtraction) and � (multiplication), and constants 0 (zero) and 1 (one).These form the ring signature,

+ : R;R! R;
� : R;R! R;
� : R;R! R;
0 : ! R;
1 : ! R:

This is a slight deviation from the presentation in mathematics, where 0and 1 are perceived as elements of the carrier, rather than symbols of theinterface, and the additive inverse is treated the same way. An algebraicspeci�cation of a ring could be the following, where a, b, c range over all ringelements R.
(a+ b) + c = a+ (b+ c); (1)

a+ b = b+ a; (2)
(a � b) � c = a � (b � c); (3)
(a+ b)� b = a; (4)

0 + a = a; (5)
1 � a = a; (6)
a � 1 = a; (7)

(a+ b) � c = (a � c) + (b � c); (8)
a � (b+ c) = (a � b) + (a � c): (9)

Here we see that any model for a ring must obey the laws that addition isassociative (1) and commutative (2), subtraction is the inverse of addition(4), and multiplication is associative (3) and distributes over addition in thefamiliar way (8{9). Further, the neutral element with respect to additionis denoted by 0 (5) and the neutral element with respect to multiplicationby 1 (6{7). If a neutral element exists it is unique. Likewise the inverseelement is unique if it exists. We may then ignore the operations 0, 1 and�, right up until the moment they, and their properties, are needed again.This simpli�es the speci�cation of, e.g., linearity of a function L : R! R to
L(a+ b) = L(a) + L(b); (10)
L(a � b) = a � L(b); (11)
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because equations such as L(0) = 0 and L(a� b) = L(a)�L(b) can easily bederived. Reducing the textual size of a speci�cation by removing redundantdetails makes the important points clearer.Continuing the analysis process for the realm of PDEs we note that abasic assumption is that every spatial point in the physical world, such asa 3-dimensional section of the earth, can be represented by an element ofa set M called a manifold. The physical properties are then ascribed toeach point in the form of a value �eld, akin to a function from the manifoldto some value domain. A value �eld has the same algebraic properties asthe value domain itself. If the values at each point are reals, such as thosefor pressure or density, they are said to form a scalar �eld. A scalar �eldhas ring properties. If they are vectors, such as those for particle displace-ment, they are said to be vector �elds. A vector �eld likewise has vectorproperties, with the corresponding scalar being the scalar �eld. The val-ues may also be matrices, linear or multi-linear mappings, or some otherform of data, such as tensors, which generalise scalars, vectors, matrices andmultilinear mappings. Tensor �elds correspondingly are tensors over vectorand scalar �elds. If the manifold has su�cient structure, at least a notionof proximity and direction, we may de�ne integration (interior and surfaceintegrals) and di�erentiation operators on the value �elds, such as Lie de-rivatives, gradients, and divergence, provided the value �elds are smoothenough. A time dependent partial di�erential equation provides a relation-ship between spatial derivatives of tensor �elds representing physical quanti-ties and their time derivatives. Given constraints in the form of the values ofthe tensor �elds at a speci�c instance in time together with boundary condi-tions, the aim of a PDE solver is to show how the physical system will evolveover time.Haveraaen et al. [1992] sketched the algebraic speci�cation of many of theseconcepts. Although they are standard mathematical concepts, they are rarelypresented strictly as a signature with axioms. Doing a proper algebraic spe-ci�cation required work which became more involved as we approached themore advanced concepts, but no really hard problems occurred. However,a noticeable e�ect was that we were moving from the normal indexed-basedpresentation of the concepts, and in the direction of coordinate free mathe-matics, as we pursued identifying the concepts involved. This may be becauseour analysis tool, algebraic speci�cations, favours the use of high-level, ab-stract concepts. A coordinate free formulation is valid independent of thechoice of coordinate system, i.e., it will be valid whether we use cartesian co-ordinates, cylindrical coordinates, or some other curvilinear coordinate sys-tem. This readily gives a much greater 
exibility in choosing implementationstrategies: some coordinate systems simplify the implementation of the op-erators and boundary conditions by introducing symmetries and vanishingterms (terms that will be 0 and thus may be eliminated from the compu-tation), while other coordinate systems may improve numerical accuracyor reduce the amount of computation needed. From this it appears thatcoordinate free mathematics is a much more versatile framework than the
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indexed-based one. An introduction to coordinate free mathematical physicscan be found in [Schutz 1980].
2.3 Domain notation versus programming notation
Blending the coordinate free DSL into a programming language raises anobservation about the relationship between DSLs and DSELs. Mathematicsand the speci�cations' notation favour use of functional and operator styleexpressions. An object-oriented programming language like C++ [Stroustrup1997] favours implementations using an imperative style, where argumentvariables are modi�ed or mutated. As an example, consider an in�x binaryoperator like +. C++ allows the declaration of an operator

template<class T> T + (const T & a, const T & b) const;
which is used in in�x notation as a+b, returning the sum as a value. Theoperator preferred by the object-oriented style is

template<class T> void += (T & a, const T & b);
which is used in�x as a+=b, but where the left argument is modi�ed to con-tain the sum of the two variables. C++ itself does not have any intrinsicsemantical restrictions on these operators, so there is no formal relationshipbetween the two user-de�ned operations. (In essence, neither operator mayhave anything to do with summation at all.)Since we are working with mathematical concepts it is natural to allowthe user to write expressions involving +. The template class parameter Tmay represent several megabytes of data, so an implementation using += willde�nitely be more e�cient. We solved this by imposing requirements onthe use of symbols such that there would be a clear semantical connectionbetween functions/operators and their mutating counterparts, not just forthe built-in operators in C++. A few rules expressing this connection isgiven in the following table.

a = a + c;  ! a += c;a = b + c;  ! a = b; a += c;a = a * c;  ! a *= c;a = b * c;  ! a = b; a *= c;a = b * c + a;  ! ft = a; a = b * c; a += t;g
These may be used to (1) generate an operator declaration for +, *, etc.,whenever a declaration for +=, *=, etc. is seen, and (2) rewrite expressionsusing +, *, etc., to an equivalent code segment using only =, +=, *=, etc. Thisis described in more detail by Dinesh et al. [1998], who also compare therun-time e�ciency of the two styles.

3. Validating the domain speci�c language
We need to check the usefulness of the DSL by making sure that we can useit to express (and solve) problems in the domain and that its concepts are
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implementable. Only then will the DSL be valuable as a tool for developingprograms. But implementability does not necessarily require exact compli-ance with the speci�cation, in which case numerical programs would notexist since it is impossible to represent exact real arithmetic on any knowncomputer architecture. Rather, we need a pragmatic notion of compliance,a notion that will accept programs that deliver useful results.
3.1 Usability: elastic wave simulation problems
The problems we will use to illustrate requirements of computational mod-elling are taken from the oil industry. Here the application of elastic wavemodelling for the interpretation of various acoustic data from potential hy-drocarbon reservoirs, is important. Repeatedly solving the correspondingPDEs for di�erent data sets requires the use of high performance computers.The recovery of the geological subsurface structure, i.e. the origin and thegeometrical picture of the geological layers, is of vital importance in devel-oping prospects of hydrocarbon reservoirs. Also, in order to obtain optimumproduction strategies for existing oil and gas �elds, detailed acoustic illumi-nation of the target zones is required. The target zones are generally quiteheterogeneous where the geological and reservoir properties vary within afew metres. Thus, any modelling tool has to be capable of handling hetero-geneous models in 2 and 3 dimensions with quite good resolution.The seismic method is an active remote sensing technique, where the acous-tic wave �eld, generated from a man made elastic impulse, is recorded onso called geophones at di�erent spatial positions in the earth. The mostcommon experimental setups are: marine seismics (source and geophones(hydrophones) are at the sea surface), well-to-well or surface-to-well seismicswhere the source is in a borehole or at the sea surface and the geophones arewithin a borehole, and ocean bottom seismics where the geophones are sitedat the seabed. In all these experiments, the elastic impulses are of relativelylow frequency, e.g. 5� 100Hz. This energy illuminates geological structures.The picture arises from re
ection and conversion of pressure (P) and shearwaves (S) at layer interfaces, where the physical properties of the adjacentrocks are discontinuous. By combining the re
ection data with estimates ofthe P or S wave velocity, a geometrical picture of the interfaces is produced.Normally a whole series of recordings are taken with small variations in theposition of the source and the geophones.For all these studies, the assistance of an acoustic wave modelling tool is ofvital importance for the con�dence of the information retained from the data.The aim is that acoustic wave simulations on the estimated model coincidewith the acoustic recordings of the real world. This requires the acousticsimulation software to be able to place virtual geophones at any positionwithin the simulated area. The simulation itself extends from sealevel andseveral thousands of metres downwards into the earth. A simulation whichis repeated with small variations in the positioning of the virtual geophonesand virtual source.
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The mathematical equation describing the elastic wave simulation problemis taken to be the elastic wave equation,

�@2~u@t2 = r � � + ~f(t);� = �(e);e = L~u(g):
(12)

The scalar �eld density � and the sti�ness tensor �eld � are given data thatvary within the physical domain, in accordance with the varying geophysicalproperties of the rocks. The particle displacement vector �eld ~u representsthe propagation of the seismic wave and will be recomputed at every iterationof the solver algorithm. The tensor �eld g de�nes the coordinate system used,the tensor �elds � and e are computed intermediate values, and ~f(t) is a time-varying vector �eld representing the forces from the elastic impulse. The r�and L~u are derivation operators, the latter dependent on the displacement ~u.A fundamental assumption here is that the materials are fully elastic. Theelastic wave equation is a standard equation from mathematical physics, andmay be found in any textbook on the subject. Its application to seismicsis discussed in much detail by Aki and Richards [1980] and Marsden andHughes [1983]. Eq. (12) is in coordinate free form, i.e., all the entities andoperators belong to the coordinate free DSL, validating its usability.Elastic wave simulation is a very compute-intensive task, where one simu-lation easily may take several hours. Important factors here are the spatialresolution and frequency of the source. Increased accuracy requires a largerdata set, more simulation steps, and consequently increased computationtime. Another factor is the complexity of the physical properties of thegeological models. In the simplest case, the model is denoted as isotropicinferring that the P and S wave speeds are independent of the wave propa-gation direction. The isotropy introduces symmetries in the sti�ness tensor� of Eq. (12), so that the amount of computation can be greatly reduced.An earth model of more general elastic properties, denoted as anisotropic,implies that the wave velocities do generally depend on the wave propagationdirection. However, most earth materials have a rotational symmetry in thesti�ness properties. In general, this is for an axis perpendicular to the in-ternal layering of the material, but often restricted to be perpendicular tothe layer surface. The latter materials are denoted as transverse isotropic,and more symmetries are introduced in the sti�ness tensor, but not as muchas in the isotropic case.Fig. 1{4, produced by SeisMod (see Section 5), illustrate some examplesof elastic waves propagating outward from a point source (producing anelastic impulse) located within various types of materials, taken at diffe-rent times after the impulse was initiated. The propagation medium is here2-dimensional, 1km by 1km and homogeneous (i.e. no alteration in the sti�-ness tensor within the grid). The elastic impulse is described by a Rickerpulse of 30Hz centre-frequency. For the isotropic case, we consider a sourcein water where no S wave exists. The other simulations are based on media
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Fig. 1: Isotropic case, seismic waves25ms after the pulse started. Fig. 2: Isotropic case, seismic waves100ms after the pulse started.

Fig. 3: Transverse isotropic case withvertical axis of symmetry, seismic waves100ms after the pulse started.
Fig. 4: Transverse isotropic case withthe axis of symmetry curved in the rock,seismic waves 100ms after the pulsestarted.

with the same density and similar wave propagation velocities. In case of atransverse isotropic material, we clearly see the e�ect of the directional vari-ation in wave speeds (in particular for the P wave), and a separation betweenthe faster moving P wave and the slower moving S wave. The �nal exampleshows a wave �eld occurring within a strongly anisotropic medium. Here thewavefronts are strongly deformed from the circular shape associated withisotropic media, or the more ellipse-alike shape associated with transverseisotropic media.As the computation time, which may be on the order of several hours,increases by a factor of more than two from the isotropic to the anisotropiccase, there is a clear demand for program versions being as speci�c as possiblefor the di�erent cases. Also, there is a need for each program version to
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run sequentially on single workstations, in parallel on a network of suchworkstations, and on supercomputers with multiple processors.
3.2 Implementability
There are a host of numerical methods that provide implementation strategiesfor scalar �elds, but neither provides an exact representation of a scalar �eld.A discretisation method will only provide a more or less inaccurate represen-tation of a scalar �eld, but an approximation that given some assumptions isclose enough to provide useful results. The more well known approaches are�nite di�erence methods, �nite element methods, �nite volume methods, andspectral methods. The discretisation methods vary in software complexityboth at the level of scalar �elds and the level of equation solvers (see Sec-tion 4.3). The choice of numerical discretisation method depends to a largeextent on the properties of the PDE to be solved and thus on the applicationsthat are to be developed. Generally, �nite di�erence methods are among thesimplest to implement, with �nite element methods being among the mostdi�cult with respect to implementation and use.The elastic wave equation is a good equation to start with from this pointof view, as it works well with the �nite di�erence discretisations. This meansthat we may initially avoid unnecessary complications both when formulatingthe solver and when implementing the scalar �elds { nice properties for aprototype implementation.

4. Software architecture and DSL structure
4.1 Structuring concepts
A collection of related mathematical structures, such as the data structuresof a programming language, typically form a category [Goguen 1991]. Acategory C is a collection of objects A;B; : : :, and morphisms f : X ! Y ,with an associated associative composition rule � on morphisms and a neutralmorphism (with respect to �) for each object. We will use the categoryProg as our prime example. The objects of Prog are data structures, andthe morphisms are all side-e�ect free algorithms from a data structure to adata structure. The identity morphism and composition rule for morphismsshould be obvious. Functions of more than one argument are de�ned fromspecial data structure objects called product objects in the category. Thecategory Set is a standard example from mathematics of a category. It hassets as objects and total functions between sets as morphisms.Categories are related by functors, functions between categories. A functorF : C ! D, from category C to category D, maps objects to objects andmorphisms to morphisms such that identities and compositions are preserved.It is not hard to construct a functor from Prog to Set that relates the datastructures and algorithms (for one speci�c computer) with the sets of valuesand mathematical functions being computed.
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Functors are in many ways like C++ template classes [Stroustrup 1997]or Ada generic packages [Barstow 1983]. These mechanisms will take a datatype as argument and de�ne a new data type based on it. We may for instancede�ne a generic list package with a type parameter, such that wheneverwe instantiate the package with a data structure D, we get a data structurelist of D. The idealised functor version of data type constructors have someadditional properties. A list data constructing functor L : Prog ! Progtakes a data structure D and returns a list of D data structure L(D). Butin addition to de�ning the list data type, it will take any function f : D !E and de�ne an iterated function L(f) : L(D) ! L(E). When L(f) isgiven a list of D as argument it will perform f on every element of the list,returning a list of E with the results. Likewise we may treat array datastructure constructors as functors. For every index type I we have an arrayconstructing functor AI : Prog ! Prog which takes an element object Eand de�nes an array [I] of E, the array structure with elements of typeE. But we also get the iterated functions, so given for instance a binaryoperation + : E � E ! E we have AI(+) : AI(E)� AI(E)! AI(E) whichadds, componentwise, i.e., for each index i 2 I, the elements of the twoargument arrays, yielding a new array with the summed values. This is veryconvenient, and may only be simulated by explicit programming of thesefunctions in current programming languages. Unfortunately, this is not fullysu�cient, as the generic package mechanisms do not have enough power tolet us do this once and for all. (We omit the technical discussion of thesede�ciencies.) A nice observation is that the array constructing functor canbe used to generate the value �elds for a manifold M by simply applyingAM to the appropriate value domain, such as the reals, vectors or matrices.We can also use these functors to de�ne �nite dimensional vector spaces bythe expression Af1;:::;ng(R), for appropriate natural numbers n and the ringR of real numbers.A good modularisation of software is achieved if we minimise the numberof distinct functors, and the software complexity of each, needed to build theapplication software. How we combine the functors to achieve these entitieswill be a blue-print for the software architecture. Good choices here havelarge potential for greatly reducing the software development e�ort. Bothby directly reducing our coding e�ort, and, more importantly, by identi-fying reusable components for other applications in related problem domains.Carefully structuring the modules reduces our coding e�ort and reusablesoftware components are identi�ed. This is work at the software architecturelevel. In the algebraic speci�cation language CASL, for instance, this kindof software architecture can be explicitly de�ned [Bidoit et al. 1999].

4.2 Structuring the problem domain
Now we need to analyse the problem domain in order to �nd the concepts thatwe can use in structuring our software. Our approach to formal software en-gineering is to use algebraic techniques, speci�cally category theory, for this.
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When developing the DSL, Section 2.2, we pointed out that a scalar �eldhas ring properties. A vector �eld is a value �eld with vectors, such that thevector �elds form a vector space with the scalar �eld as the ring. As a con-sequence, n-dimensional vector �elds over a manifoldM may be constructedby either of the two approaches:
(1) applying the value domain construction to vectors, AM(Af1;:::;ng(R)),or
(2) applying the vector construction to scalar �elds, Af1;:::;ng(AM(R)),

and similarly for tensor �elds. There does not seem to be any immediatereason to prefer one over the other, and conventional numerical softwareuses the �rst construction. However, a closer scrutiny of the problem do-main reveals that a tensor �eld contains advanced integration and derivationoperations which are not de�nable from the tensor abstraction, but requiresaccess to the value �eld properties, i.e., to the discretisation.
� Applying the value domain construction AM to vectors (Af1;:::;ng(R))as in construction (1) makes us rebuild the discretisation for every levelof construction, i.e., one for scalar �elds, another for tensor �elds etc.This was observed in the tensor oriented implementation reported byVerner et al. [1993].
� But the integration and di�erentiation operators of the vector �eldAf1;:::;ng(R) for arbitrary scalar �eld R in construction (2) may be ex-pressed from operations like integration and partial derivatives on thescalar �elds R = AM(R).

This reveals that apparently equivalent constructions from a data structureand algorithmic complexity viewpoint, may have dramatically di�erent soft-ware complexity. Based on these observations it is clear that a more fruitfulapproach is to use the second construction above as starting point. Instead ofbuilding many di�erent constructors for the value domains (vectors, matrices,linear mappings, etc.), we note that it su�ces to build a tensor constructor,which, given certain assumptions, encompasses all these. Tensors also giveus the building blocks needed to de�ne coordinate free operators. The imple-mentation may then be reduced to build a constructor for scalar �elds and aconstructor for tensor �elds.The functor SM : Prog ! Prog for the construction of scalar �elds maybe implemented by amending the construction AM such that it also includesthe de�nition of integration and partial di�erential operators. The tensorconstructor Tf1;:::;ng : Prog ! Prog amends Af1;:::;ng with the integration,general derivation operators and other tensor operators, assuming that thetemplate parameter has an appropriate interface. The tensor �eld construc-tion for a manifoldM then becomes Tf1;:::;ng(SM(R)). If the tensor exhibitssymmetries, we may be able to use a constructor Af1;:::;mg, where m � n, asdata structure.



256 M. HAVERAAEN, H.A. FRIIS, T.A. JOHANSEN
4.3 Software architecture for PDE problems
Our analysis of the PDE domain has given us the components we need for thesoftware architecture. It has also provided us with a problem domain speci�clanguage and speci�cations of the types and operations that we need. Butwe also have to make sure that this really can work as a framework forimplementing numerical methods. In this analysis we need to consider theissue of developing both sequential and parallel versions of the software.The di�erent components involved in a numerical solution of a PDE canbe factored in three layers:
(1) The numerical discretisation methods which makes it possible to rep-resent the value �elds SM for the in�nite setM by a �nite approxima-tion. The discretisation will need to provide the ring operations andthe partial di�erentiation operations. SM will need to contain a largeset of values, often up to a million or more, in order to provide a goodapproximation. To represent the data values on M it is convenient touse the functor AI , for some suitable index set I, as data structure.
(2) The tensor construction Tf1;:::;ng is where coordinate systems are han-dled and the advanced di�erentiation operations are implemented. Theconstruction should work with any scalar �eld, i.e., with any discreti-sation of a scalar �eld as well. Conceptually Tf1;:::;ng is an extension ofAf1;:::;mg, for some m � n, and using the latter as the data structureseems natural.
(3) The uppermost numerical layer is the solver algorithm itself. Here thetime discretisation is decided, and the iterator that will generate thetransient behaviour (such as for a seismic simulator where we are in-terested to know how the seismic wave propagates) or the steady statesolution (for instance if we want to �nd a steady state 
ow pattern) isimplemented. These algorithms are often normalised, i.e., the numbersthey work with are scaled to be around 1:0, where the numerical res-olution of the machine is best. The numbers are then scaled back forinput/output purposes and as needed by the solver algorithm.

Using the array constructor to implement both the numerical discretisationand the tensor construction allows for a reuse of the array module. Butmore importantly it allows a separation of concerns when implementing thesemodules: the array constructor may focus on the data layout pattern, whilethe numerical modules may focus on the numerical aspects, using the arrayconstruction for the storage aspects. The architecture also implies that weonly need to relate to, and thus implement, the discretisation method whenwe implement the scalar �eld, and that the vector and tensor �eld implemen-tations are independent of this choice. If we need to change discretisationmethod, this will be localised to one module, and not being spread out allover the code, which is the normal case with traditional numerical software.This also provides a route to parallelisation. We will, at the scalar �eldlevel at least, have a large collection of data values that may be distributed in
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a dataparallel fashion [Boug�e 1996]. Actually, it su�ces to provide a parallelimplementation of the array constructor to get a parallel version of the wholeprogram. Haveraaen [1998] discusses this.
4.4 The Sophus library
The software architecture developed in the previous section is implementedby the Sophus software library. It provides the abstract mathematical con-cepts from PDE theory as programming entities. Its concepts are based onthe notions of manifold, scalar �eld and tensor �eld, while the implementa-tions are based on the conventional numerical algorithms and discretisations.Sophus is structured around the following concepts:

� Basic n-dimensional mesh structuresMn : Prog! Prog taking a ringR as argument. A mesh is an array constructor Af1;:::;k1g�:::�f1;:::;kng,and includes the de�nition of the general iterated operations. Speci�c-ally, operations like +, � and � are iterated over all elements (muchlike Fortran-90 array operators [Adams et al. 1992]), and operationsto add, subtract and multiply all elements of the mesh by a scalarare included. There are also operations for shifting meshes in one ormore dimensions. Operations like multidimensional matrix multiplica-tion and equation solvers may easily be implemented for the meshes.Sparse meshes, i.e., meshes where most of the elements are 0 or havesome other �xed value, may also be provided. Parallel and sequen-tial implementations of mesh structures can be used interchangeably,allowing easy porting between computer architectures of any programbuilt on top of the mesh abstraction.
� Manifolds M. These de�ne sets with a notion of proximity and direc-tion which represent the physical space where the problem to be solvedtakes place.
� Scalar �elds SM. They describe the measurable quantities of the phys-ical problem to be solved. As the basic layer of \continuous mathemat-ics" in the library, they provide the partial derivation and integrationoperations. Also, two scalar �elds on the same manifold may be point-wise added, subtracted and multiplied. The di�erent discretisationmethods, such as �nite di�erence, �nite element and �nite volumemethods, provide di�erent designs for the implementation of scalar�elds. Scalar �elds are typically implemented using the basic meshstructures for data.
� Tensors Tf1;:::;ng. These provide coordinate free mathematics basedon the knowledge of the coordinate system, whether it is cartesian,axisymmetric or general curvilinear. The tensor module provides theadvanced di�erentiation and integration operations, based on the par-tial derivatives and integrals of the scalar �elds. Tensors also provideoperations such as componentwise addition, subtraction and multipli-cation, as well as tensor product, composition and application. The
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implementation uses the basic mesh structures, with scalar �elds asthe ring parameter.

Using Sophus, the numerical equation solvers are formulated on top of thecoordinate-free layer, forming an abstract, high level program for the solutionof the problem.
5. Implementations: DSL library and elastic wave simulators

In Section 4 we have investigated the structure of the DSL and decided whatbasic components it consists of and how the DSL can be built from thesecomponents. We also studied, in Section 3.2, the implementability of theDSL, but postponed the decision about which discretisation method to usetill we had an application that would require the use of a speci�c method.The usefulness of the DSL was validated in Section 3.1 where we formulatedthe elastic wave problem.Here we will start the design of SeisMod, a collection of elastic wave sim-ulators, and use this to decide which variant of the library modules to im-plement. The piecewise implementation of the library this implies should beseen as a normal way of maintaining the library, making it more completeand versatile as time goes. But such an incremental building will only workout if the library architecture is well thought out, i.e., mature, so that areorganisation of the library will not be required as the library is graduallybuilt.The elastic wave simulators we are using as our example provide someadditional complexity for the solver design. This is due to the boundaryconditions of the problem. Since we must do our simulations in a �nite com-putational domain, the seismic waves should ideally leave the domain whenreaching the boundaries. This can not be achieved without special numericaltreatment. The upper boundary (for instance the sea/air border) must alsobe handled specially in order to obtain the proper physical behaviour. Theseproblems are solved by implementing a boundary-aware scalar �eld on top ofthe plain scalar �eld discretisation. This boundary aware scalar �eld is thenused when instantiating the tensors.This leaves us with the following main software modules for the seismicsimulators:
� Mesh: domain information, index set, and the basic n-dimensionalmeshes in sequential and parallel version.
� Tn: domain information, manifold, and n-dimensional toroidal scalar�eld (no boundaries).
� Bn: domain information, manifold, and n-dimensional scalar �eld withboundaries.
� Tensor: tensors with di�erentiation operators.
� Seismod: the solver algorithm in coordinate free form.
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The following subsection describes a basic collection of solver programs forthe seismic problem. Then we describe variations of the seismic problemwhich exercise the 
exibility of the software architecture developed above.All the variations we develop are captured in Table I, which identi�es 32versions of elastic wave simulators.

Table I: Some con�gurations for SeisMod.
Con�guration seismic ultrasonic in boreholeMesh D DS or P S or PTn D DS SBn D DS or U UTensor SI or TI or TA UI or UTISeismod SE or PE SE or PE

Legend:� D is domain information, such as shape and indices or elements of a manifold.� Mesh S is sequential implementation.� Mesh P is parallel implementation.� Tn S is staggered �nite di�erence implementation.� Bn S is sea surface boundary handler, i.e., the scalar �eld extends all the way upto the sea surface.� Bn U is underground boundary handler, i.e., the scalar �eld is surrounded by rock.� Tensor SI is standard isotropic.� Tensor TI is transverse isotropic with vertical axis of symmetry.� Tensor TA is transverse isotropic with arbitrary axis of symmetry (very close tofull anisotropic).� Tensor UI is ultrasonic for borehole with isotropy (cylindrical coordinates).� Tensor UTI is ultrasonic for borehole with transverse isotropy (cylindrical coordin-ates).� Seismod SE is standard elastic.� Seismod PE is poro-elastic.

5.1 A basic collection of simulators
The original elastic wave simulator problem, see Section 3.1, was describedfor a general 3-dimensional earth with any complexity and heterogeneityin the physical properties (density and sti�ness) within this model. In fullgenerality, this should infer a sti�ness tensor � of Eq. (12) at each grid pointto have 34 = 81 components. However, the physical constraints implied byconsidering a linear and in�nitesimal deformation theory, cause the sti�nesstensor to contain at most 21 di�erent components. The computational e�ortmay in some cases be reduced by using 2D models. Such models are goodapproximations when the earth models vary only slowly perpendicular to theconsidered 2D plane. Implementing this, using cartesian coordinates and forthe isotropic simpli�cation, reduces the number of distinct components in
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any tensor involved in the computation to at most 3. Even if we assumethe more general anisotropic case in 3D, we never need more than 7 distinctcomponents. But this reduction of storage and computations comes at aprice: all the algorithms in Tensor must be specially adapted to the combinedchoices. So we need three distinct Tensor implementations, one for each ofisotropic (SI), transverse isotropic (TI) (assuming vertical axis of symmetry),and anisotropic (TA) cases.Using a sequential Mesh in the implementation of Tn gives a sequentialimplementation of the seismic simulators which will run on any machinewith a decent compiler. We may then exchange this with a parallel Mesh toachieve a parallel version of the simulators. Implementing Mesh using MPI[Snir et al. 1996] gives us a code that can run on any machine con�gurationsupporting MPI, such as a network of workstations or a multiprocessor.The seismic simulator has been implemented for all the three rock modelcomplexities both for sequential execution and parallel execution on a net-work of workstations and on a multiprocessor supercomputer. This providesa total of 6 source versions for these di�erent machine architectures: Mesh Sor P, Bn S, Tensor SI, TI or TA, and Seismod SE.
5.2 Modelling of ultrasonic measurements in boreholes
While the typical seismic experiments reveal earth models several kilometreswide and deep, acoustic measurements in boreholes are performed to retrievedetails of the material properties in the close vicinity of the well. Here bothhigh-frequency P, S and surface waves are studied in order to depict thezones to be carefully handled during the production and injection phase.The near borehole reservoir properties are important both for the estimateand production of the hydrocarbon 
uids. In an analogous way to seismics,these properties are sought for by ultrasonic acoustic experiments. In this,a source and an array of transducers are placed within the borehole. Hereacoustic waves within the range of 5 � 20kHz are considered. For thesefrequencies the acoustic waves illuminate only some few decimetres of thesurrounding formation. In these experiments P and S waves and boundarywaves occurring in the borehole wall are considered.From a modelling viewpoint, the problem is simpli�ed if we consider theearth model to be symmetric around the borehole, i.e., it is axisymmetricwith the well bore itself as the axis of symmetry. This is very useful sincethen the 3D problem becomes a 2D problem using cylindrical coordinates,resulting in a corresponding reduction of CPU-time. This implies the need tocreate a new implementation of Tensor. Unfortunately, since the geologicalmodel complexity also in
uences the implementation of Tensor, we need tocreate di�erent versions of it, if we are to cater for the various geologicalmodels (isotropy, transverse isotropy, anisotropy). However, two versions isenough, since we in the case of transverse isotropy, only need to consider anaxis of symmetry parallel with the borehole.
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Furthermore, we here also have to take into account that the boundaryconditions in the borehole are di�erent from those on the surface. So weneed a new Bn with open boundaries in all directions.Thus we need 3 modi�ed implementations to cater for the requirements ofthe borehole problem (Bn U and Tensor UI and UTI). But the changes arenot radical from the original versions, and more than 50% of the code ofthe modules we replace can be reused in the creation of these modules. Afact which in some cases may be made explicit by the use of inheritance.The changes do not a�ect any other modules, nor how they should be �ttedtogether. We also get similar parallel and sequential versions without anyfurther implementation e�ort, giving us, all in all, 4 new seismic simulators.

5.3 Modelling of seismic tomography experiments
The variants of modules we have de�ned allow us to con�gure yet anotherversion of SeisMod, a system for seismic tomography simulation. This iswhen an elastic impulse is initiated at the surface or within a borehole, andthe geophones are placed in surrounding boreholes. The modelling is hereto compute the purely transmitted wave�eld. We already covered the casewhen the tomography extends to the surface in our original simulators. Butif the target area is entirely subsurface, we only have to apply the under-ground boundary handler Bn U. This may be combined with any of theTensor versions SI, TI or TA, and of course with a sequential or parallel meshimplementation, increasing the number of speci�c simulators from 6 seismicand 4 ultrasonic to 12 seismic and 4 ultrasonic.
5.4 Modelling of wave propagation in poro-elastic materials
The hydrocarbons we want to investigate are stored in porous rocks. So theelastic waves will propagate in two-phase materials, or poro-elastic materi-als. In particular, the use of a poro-elastic modelling may describe severalwave phenomena observed in ultrasonic borehole data. Typical poro-elasticmaterials are high porosity rocks containing viscous 
uids. In such materi-als the particle displacements, associated to an induced stress �eld, of thesolid skeleton and the 
uid may di�er. This physical system is describedby two coupled equations of motion, which, accordingly, have to be solvedsimultaneously. The pioneering, mostly analytical work of Biot [1955, 1956a,1956b] reveals the existence of two P waves and one S wave. The two Pwaves are usually denoted the fast and the slow P wave, where the fast Pwave propagates mainly within the skeleton, but modi�ed by the presence ofthe 
uid. The slow P wave, accordingly, propagates mainly along the 
uidphase and is modi�ed by the skeleton. The fast P wave carries the main Pwave energy, while the slow wave is mainly of phenomenological character.The modelling of poro-elastic materials is receiving increased attention withthe demand for a more precise elastic wave simulation in reservoir zones. Thecoupled set of equations to be considered are
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�11 @2~u@t2 + �12 @2 ~U@t2 = r � � + (1� q)~f(t) + b(@~U@t � @~u@t );�12 @2~u@t2 + �22 @2 ~U@t2 = rs+ q ~f(t)� b(@~U@t � @~u@t );� = �(e) +Q(�);s = M(e) +R(�);e = L~u(g);� = r � ~U:
(13)

Here the displacement vector �elds are ~u for the solid and ~U for the 
uid.Likewise the tensor �elds � and e of Eq. (12) get companions s and �, re-spectively. Further the sti�ness tensor �eld � is split into four tensor �elds�, Q, M and R, representing the sti�ness of the two phases and their inter-action. We also get three density coe�cients �ij and a friction tensor �eld b,as well as a porosity q. The operators remain basically the same, but we getan additional derivation operation r. Still, the formulation in Eq. (13) is incoordinate free form, as required for our DSL.Even though these equations are very di�erent from Eq. (12), we see thatall the concepts involved are tensor �elds and tensor �eld operations. Thenew equations initiate a new implementation of Seismod, the PE version. Inprinciple no other module needs modi�cation, and this would be the case ifwe had used a fully general tensor �eld class implementation. However, as wedecided to implement specialised tensor class versions for SI, TI, TA, UI andUTI, our incremental implementation policy means that these may not caterfor the requirements on data formats and algorithms from the new tensor�elds and tensor �eld operations. These additions will mostly be the sameacross versions, but not quite, implying that we should analyse the situationwith specialised implementation versions further. With these amendments,poro-elastic materials may now be embedded in geological models for eitherlarge-scale seismics or ultrasonic experiments in boreholes, doubling the num-ber of elastic wave simulators from 16 to 32.
6. Results achieved

6.1 Program development productivity
In the previous section we have shown that the Sophus PDE software ar-chitecture has made it easy to pin-point exactly which module needs to bemodi�ed when requirements are changed. Besides the obvious intuitive ben-e�ts from this, there are de�nite quantitative bene�ts as well. This canbe seen when considering various cost estimating techniques, of which theCOCOMO model by Boehm [1981] is the most well known. Essentially, amodel like COCOMO correlates the cost of developing a piece of softwarewith the size of the software. More advanced estimation techniques take intoaccount the software complexity as well. Experience, as captured by thecost models, shows that cost grows more than linearly in program size, both
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for development and maintenance. Thus halving the code that needs to bemodi�ed in order to meet new requirements, more than halves the cost ofthe modi�cation.Table II relates di�erent modules in the Sophus library to the size of thecode that implements them. The versions that can be generated were dis-cussed in the previous section, and summed up in Table I. The total numberof lines has been tallied under four sets of columns. The �rst tally repre-sents the lines of code needed for the standard seismic simulator (cartesiancoordinates, isotropic rock model, sequential), disregarding other supportmodules and con�guration �les. This tally will be used as the reference costof developing a seismic simulator. The second tally gives the total numberof lines needed to create the 5 additional simulator versions described bythe original requirements speci�cation in Section 3.1. The third tally givesthe total number of lines for the 4 versions of ultrasonic, axisymmetric bore-hole acoustics. This also gives us 6 versions of underground tomography,giving a total of 16 versions of elastic wave simulators. The last tally, forthe PE column, gives the cost of the poro-elastic version. In the tensor rowfor this column we have included the total number of lines to be amendedto the tensor classes due to the new tensor operations and data required byporo-elasticity. Note that the size of the variants in general gives a too highestimate of the cost for creating a version, since much of the code from theoriginal version of a module can be reused.
Table II: Indicative sizes of the modules in lines of code. The legend is given in Table I.

Module D S/SI/SE P TI TA U/UI UTI PEMesh 2000 2000 2700Tn 1700 1600Bn 1500 1900 2100Tensor 1000 1000 1800 1000 1100 1200Seismod 600 700| {z } | {z } | {z } |{z}Total: 12300 5500 4200 1900

Investigating some speci�c example con�gurations, we see that creatinga parallel version of Mesh only costs two thirds of that of implementing afull Mesh, since we do not need to reimplement the domain and index types(column D). The cost of the parallel code represents redeveloping less than25% of the full program. Once the parallel module has been developed, it canbe freely mixed with any version of the program, yielding a parallel versionof that program for no additional cost.Shifting from the isotropic version to one of the anisotropic version repre-sents a redevelopment cost of 8%{15% of the software cost, as can be seen bythe changes needed, which only a�ects Tensor. Achieving parallel versionsof the anisotropic codes now comes for free. So the development of all the 6
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versions asked for in Section 3.1 adds less than 50% to the cost of developingthe �rst version.Creating the borehole version of the seismic simulator means we have toupgrade both the Bn and the Tensor modules. The former due to the changeof boundary conditions, the latter due to the use of cylindrical coordinatesto improve e�ciency. These changes represent a total cost of less than 35%of the reference program code. In fact the modi�cations involve much lessthan 50% of the 4200 lines listed, bringing the cost of the borehole versiondown to about 15% of the development costs. We get a parallel boreholeversion for free. More interestingly, the revised Bn implementation may becombined with the other tensor classes to yield a underground tomographysimulator. This adds 6 new seismic simulator versions for free, in additionto the 4 borehole versions we consciously developed.This gives us a tally of 16 versions of the seismic simulator, counting sequen-tial and parallel versions. The total cost of the 15 extra versions developedrepresent less than 80% of the development cost of the initial simulator. Ifwe amortise the total cost of developing all the 16 versions, we end up with adevelopment cost of each in the range of 10%{15% of the development of theinitial program. Recognising that the number of versions will double whencoding the poro-elastic version (the last column), we see that the averagedevelopment cost of a version drops to less than 10% of the initial develop-ment costs. Assuming the existence of a fully developed library, we see thatthe marginal cost of writing a new program may easily become less than10% of the development cost of a full program. The most notable case iswhen we may obtain 16 poro-elastic versions at a total cost about 15% of thecost of the reference program, even though the change in the mathematicalequations are large. This is a tremendous gain in software development pro-ductivity over traditional development. A clear demonstration of the bene�tsof software reuse, contingent on a 
exible and robust software architecture,i.e., a mature software design.
6.2 Discussion
It can be argued that all of these examples are taken from the same smallarea within PDE. Thus we have only shown that these gains are achievablewhen many closely related versions of a program are to be developed. Thismay be the case, but Grant et al. [1998] applied the Sophus software archi-tecture to solve computational 
uid dynamics problems. In their case study,many new implementations were needed. Almost all were instances of theSophus modules already identi�ed here, and none required a modi�cation ofthe library architecture. This supports our view that the Sophus softwarearchitecture is mature. In general we see that a new discretisation methodwill obviously require a new scalar �eld implementation, new equations to besolved require new top level solvers, etc, but all within the same framework.Comparing this with experience from other numerical libraries for solvingPDEs, e.g., reports by Budge et al. [1992] and Verner et al. [1993], we note
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that Sophus seems to avoid many of the di�culties and added costs that oftenappear when extending the domain of a library. Typical problems that havebeen identi�ed by library designers include inappropriate abstractions andinappropriate architectures. In the problem domain we have presented here,an inadequate abstraction could be a coordinate system dependent de�nitionof the operators. Then Eq. (12) and Eq. (13) would need to be changed ac-cording to what coordinate system was to be used (this is the normal casein current computational models). The choice of an inappropriate architec-ture shows when using the construction AM(Af1;:::;ng(R)) directly as datastructure for vector �elds. Then both scalar �elds and tensor �elds embodythe discretisation method, meaning that discretisation code is duplicated inthe library. When expanding the library with another discretisation methodmost of the library has to be reprogrammed for the new method. Budge etal. [1992] report that even user programs may have to be rewritten for animproved library.Our case study of the Sophus software architecture for PDEs does notshow these symptoms. The Sophus library is designed to mimic the abstractstructure of the mathematics of partial di�erential equations, as used in thedescription of many natural and industrial phenomena. Its apparatus sup-ports coordinate free numerics in the formulation and development of solversto the problems. By requiring strict adherence to speci�ed interfaces, we havebeen able to achieve that di�erent implementations of the same mathemat-ical concepts are basically interchangeable. The Sophus library componentscan be organised in di�erent layers of abstractions. The interchangeability ofmodules within a layer allows software developers to experiment with diffe-rent solution strategies and high performance computer architectures withoutthe need for extensive reprogramming. For example, the change from a se-quential to a parallel version of a seismic simulator does not involve anyreprogramming of the rest of the solver application, just a small change inthe con�guration. Currently the Sophus library and application software isimplemented using C++.

7. Summary
We have proposed a methodology that focuses on developing domain speci�clanguages (DSL) as an important basis for software library development. Thesoftware library is seen as providing a domain speci�c embedded language(DSEL) [Hudak 1996]. The DSL will aid when formulating problem descrip-tions, while the DSEL is useful for the design and implementation of applica-tion programs. In our opinion development of a DSL and its implementationas a software library has a software life cycle model, see Section 1, which isdistinct from that of application software development [Boehm 1976].Software itself is a formal entity, with strict rules for syntax and a preciseinterpretation (ultimately this is the semantics given by the formal systemthat a computer represents, but hopefully it is given as a formal semantics
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that can be investigated by mathematical tools). This leads to a disciplineof formal software engineering, i.e., engineering of the formal side of soft-ware. Formal software engineering does not imply the use of formal methodsthroughout. We see formal methods as especially useful when developing aDSL and when investigating the structure for the software library that willprovide the resulting DSEL. We strongly believe that algebraic methods areappropriate for this, and have used them extensively in our case study.The major part of this paper is a case study from the �eld of computationalmodelling, speci�cally that of partial di�erential equations (PDE), an areawhich is of signi�cance for the industrial sector. In [Haveraaen et al. 1992]we have used algebraic speci�cation techniques to identify types and opera-tions from the problem domain. This gave us a coordinate free language forPDEs. This DSL is distinct from the one commonly used for implementingPDE software, but it is a more abstract language with much better softwarestructuring properties. The fruitfulness of the DSL was checked with the de-velopment of a collection of application programs. The DSL was also studiedwith the purpose of structuring the concepts in order to �nd an optimal ar-chitecture for the supporting software library. The library architecture wasdesigned to eliminate a large part of the implementation work by focusingon reusable template classes.In summary the concepts of universal algebra allowed us to identify thebasic entities { the types and functions { of the problem domain, giving thema syntax and a meaning, yielding a domain speci�c language. This languagewas used to formulate problems, and to check its usability for writing software{ programming in the small. Then we used categories and functor conceptsto pinpoint how the language elements should be organised into a collectionof modules. By carefully structuring the modules our coding e�ort can bereduced, and reusable software components be de�ned. This is work at thesoftware architecture level { programming in the large.Later, after the initial development of the DSL library and the applicationprograms, additional applications were speci�ed, and the impact of the newrequirements on the library were studied. The case study showed that thelibrary architecture remained stable throughout these changing requirements.It was possible to incrementally add interchangeable versions of new imple-mentations as the need arose, and then use these with the other constructorsto build the needed software. This seems to yield a radical improvementin software development and maintenance productivity. After developinga family of related problem solving software, we developed a family of 16new application programs. The new family of solvers were so di�erent fromthe existing applications that they traditionally would have required a fulldevelopment process to be initiated (but some reuse of code should be ex-pected even in this case). With our approach a total cost of 15% of thedevelopment cost of a single application was achieved for the new familyof applications. Moreover, the library architecture makes it clear exactlywhich components need to be reconsidered when requirements change. Inmost cases a component would relate to a speci�c requirement, but in some
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cases a component was in
uenced by several independent requirements andrequired reimplementation whenever one of them changed. Further study ofstructuring techniques is needed to see if these in
uences can can be factoredout in a more satisfactory way.Our software methodology relies on concepts packaged under the termobject-orientation, and thus the elastic wave simulator is object-oriented nu-merics (OON) in the sense of Wong et al. [1993] and Arge et al. [1997].However, we end up with a software structure which deviates much frommost packages claiming to be OON, such as those of Verner et al. [1993]and Bruaset and Langtangen [1997]. The OON approaches represent a clearimprovement over the traditional numerical software strategy, but many ofthe OON approaches still remain within that tradition when it comes to theconceptual decomposition of the software architecture.The development of software libraries for important industrial problems isno simple task. One of the most important aspects is to �nd a mature librarystructure [Racko 1995]. Maturity means the library structure is robust facedwith new demands and further development. We approached library develop-ment using formal software engineering, speci�cally algebraic methods. Thesoftware library produced this way has shown a high degree of maturity. Thismanifests itself by the fact that the structure of the library, and a large partof its code, is unaltered when the basic discretisation method is changed,and that a radical change in the assumptions of the problem (moving fromelasticity to poro-elasticity) requires modi�cations in one of the components.Moreover, only one component needs to be changed when the software ismoved onto a parallel machine architecture.Formal software engineering is just a small part of the �eld of softwareengineering, but a sharper focus on this small area seems to be more thanworthwhile in the bene�ts that may be gained in reduced software cost andimproved reusability.It may be argued that our example is taken from an area, partial di�erentialequations, with a highly developed formal theory, and that this exampledoes not indicate any general applicability of formal software engineeringand algebraic methods. Our reply is that we promote algebraic technologyas a language discovery device, and that any domain that is to be analysedfor the purpose of developing software needs its language concepts to bediscovered and formalised. Secondly, we promote reasoning about softwareas a formal entity. This again is a property of software as such, and isindependent of the problem domain the software is developed for. Thusboth of these arguments should motivate the investigation of the potentialof formal software engineering in other application areas.
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