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Abstract. Software itself may be considered a formal structure and may be
subject to mathematical analysis. This leads to a discipline of formal software
engineering (which is not necessarily the same as the use of formal methods in
software engineering), where a formal understanding of what software components
are and how they may interact is used to engineer both the components themselves
and their organisation. A strategy is using the concepts that are suited for organ-
ising the problem domain itself to organise the software as well. In this paper we
apply this idea in the development of computational modelling software, in partic-
ular in the development of a family of related programs for simulation of elastic
wave propagation in earth materials. We also discuss some data on the technique’s
effectiveness.
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1. Introduction

Formal methods and reuse of software components has for a long time been
acknowledged as important for improvement of software quality and reduc-
tion of software cost. Investigating the formal aspects of software may also
lead to significant improvements in these areas. Such a focus may be termed
formal software engineering. Formal software engineering is not the same as
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the use of formal methods in software engineering. Rather it is a focus on
the formal, mathematical side of software artifacts, and using this insight
in the engineering of software products. Following the tradition of mathe-
matics, applying such an insight does not require the use of formal methods.
Informal arguments suffice, as long as they are rooted in a precise semantical
understanding. The approach to formal software engineering used in this
paper is based on the algebraic “toolbox”, a brief overview is given by Ehrig
et al. [1998]. This ranges from universal algebra, suited to investigate the
language of the problem domain, to category theory, suited to discuss design
principles for software architecture.

When designing computer programs for some problem domain, one is at
least faced with three problems: (1) what are the concepts that have to be
used for the construction of software in this domain, (2) what is a good pro-
gramming notation for these concepts, and (3) how can they be implemented
as software code. This has spawned work in areas like domain specific em-
bedded languages (DSEL) [Hudak 1996] and software architectures [Bidoit et
al. 1999]. A domain specific language (DSL) provides syntax for the concepts
of a problem domain, supporting the expression of problems and solutions
for that domain. A DSEL is the merging of a DSL with a general purpose
programming language, ensuring full algorithmic and data structure decla-
ration capabilities, but at the cost of constraints on the linguistic elements
we may use in the DSL. Software architecture is the organisation of software
into packages and modules and how to combine these in order to build spe-
cific software. Ideally software should be decomposed in such a way that
different considerations may be confined to separate modules. Also, modules
that provide alternative implementations of a concept should be easily inter-
changeable. This requires an extensive analysis of both the problem domain
and of the software structuring methodologies available. Doing this well gives
a very flexible software structure, easy to tailor for specific needs, as well as
adapt to changing requirements — a characteristic of mature software design
such as described by Racko [1995].

Domain specific languages are abundant in all application development
tasks. Very often the DSL is “invisible”, in the sense that it was embedded
already in the design of the programming language we are using. Then we
often do not relate consciously towards which DSL is involved. In the 1960’s
and 1970’s building domain concepts into a programming language was the
common way of providing DSLs. With the advent of advanced modularisa-
tion concepts such as abstract data types and object orientation, DSELs may
now be provided as separate libraries. Thus a programming language may
be adapted to any domain by including the appropriate software libraries
for that domain. Often a domain may have several distinct, but coexisting,
domain specific languages. Then it becomes very important to be aware of
this, and be able to make conscious decisions about which one to use. In
the worst case, it may be beneficial to develop an alternative DSL — a DSL
that may have better properties for expressing simple solutions to complex
problems.
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Our idea for a software process model for developing and implementing a
DSEL is based on the following steps. As for any proper life cycle model it
needs to be amended with additional feedback and control loops, similar to
the way the original waterfall software process model by Royce [1970] has
been amended, e.g., by Boehm [1976].

(1)

(2)

(4)
(5)

Establish an appropriate DSL by defining important properties of the
problem domain concepts. Using algebraic specifications for this we
identify sorts and functions to express application data and algorithms.
It also nails down the semantics of the DSL.

Validate the suggested DSL by checking its

o usefulness: formulate problems using the DSL, embed the DSL
into a programming language and design solutions to the problems
using the resulting DSEL. (This is mostly a test of the concepts
themselves, but may also form part of an application development
process, namely the functional requirements and high level design
steps, that may be continued independently of the DSEL life cycle
process.)

o tmplementability: design data structures for the sorts and al-
gorithms for the functions. The design should be verified by show-
ing the relationship between the code and the specified concepts.
(Note that this only will provide one of many possible designs, each
design with different accuracy and resource usage characteristics —
but then one such design is sufficient to show the implementability
of the concepts, though it may not be the implementation we end
up using.)

Decide the architecture of the software library that provides the DSL
concepts. This requires grouping the sorts and functions for software
components, studying their interplay and trying to parameterise the
components as much as possible. The aim is to reduce the number
of components and the software complexity of each by focusing on
reusability. (Software complexity is a measure of the difficulty and cost
of writing the software. It does not relate to the resource usage at
runtime which is the subject of traditional complexity theory.) This
generally increases the versatility of the components, and simplifies the
library itself. It may also greatly reduce the work needed to implement
the full library. Categorical reasoning is useful for this purpose.
Design and implement a prototype of the software library by coding the
data structures and algorithms in a suitable programming language.
Maintain the library by adding variants of the components, as well as
correcting (unavoidable) errors. Variants may be demanded by appli-
cation program development in order to meet efficiency requirements.

The first of these steps identifies the concepts and finds a notation for these.
Once the specifications are in place, it is possible to experiment with the
notation and concepts to design programs solving actual problems. This al-
lows early checking of the usefulness of the concepts. An adjustment of the
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concepts and notation at this stage is comparatively cheap. We also have
to check that the concepts are implementable before they are meaningful.
Thus we have both outward (usability) and inward (implementability) re-
quirements on a DSL in the validation of its specification. When specifying
the domain concepts we develop a DSL, while we transform it to a DSEL
when designing solutions.

We firmly believe that the development of a DSL and its implementation
as a software library is a separate activity from application program develop-
ment, and that they have different software life cycle models. An application
software process model is typically based on the waterfall life cycle model of
Royce [1970] with steps: requirements specification, design, validation of the
design with respect to requirements, coding and maintenance. We emphasise
the use of a DSL in the problem formulation (requirements specification) and
the use of the DSEL in formulating and implementing the solution. While
an application program is developed to solve a specific problem for one cus-
tomer, a DSEL is to serve many application developers. Thus finding the
right domain concepts is crucial, and devising a flexible library architecture
is important, for the success of both the library development and the ap-
plication development. Of course one will never in practice proceed along
the sketched steps of the life cycle models in linear order. A more reflected
understanding of a life cycle model will introduce all kinds of feedback loops,
quality assurance steps, detailed guidelines on how to approach standard
problems, etc. Such issues are investigated by the software process com-
munity, and is captured in models like that of Paulk et al. [1993]. The basic
steps we have identified are still central in the enhanced models.

This paper is devoted to a case study developed according to the ideas
above. The case study is taken from the area of computational modelling, in
the typical form of a physical phenomenon described by a partial differential
equation (PDE). Computational modelling of real world phenomena is be-
coming an important research tool in the sciences. Currently this is hampered
by the time and effort needed to develop good computational models, and
the time and cost needed to port such models onto a high performance com-
puter. We ascribe much of these costs to the use of a less than optimal DSL
for conventional numerical software, namely that of indexed array structures,
as exemplified by Fortran-66 [1966]. A conventional solver for a PDE embod-
ies the discretisation method, coordinate system, as well as the actual solver
algorithm. Typically such software only handles the limited set of problems
it was developed for, and can not easily be adapted to related phenomena or
account for change of numerical discretisation methods. In many ways such
a solver becomes a legacy code for the group that developed it: being their
main tool for success, but also limiting what problems they may tackle.

Instead we want to develop an alternative DSL, namely that of coordin-
ate free numerics, for this domain. This DSL captures more of the abstract
concepts of the underlying mathematics, and may therefore blend more nat-
urally with modern notions of software structure. This work started with
the algebraic specification of concepts from partial differential equations by
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Haveraaen et al. [1992]. Here we continue through the remaining steps of the
the development process and we sketch the algebraic tools we have chosen
to aid us through this. We also measure the effectiveness of this approach to
software development by implementing a collection of application programs
for the acoustic imaging of small and large scale geological objects, problems
important in oil exploration. This problem is challenging, in that the same
set of fundamental PDEs has to be formulated for various kinds of exper-
imental setups, e.g., in cartesian or cylindrical (borehole) coordinates, and
with various kinds of geophysical models and boundary conditions.

The choice of computational modelling as our domain was motivated in
part by its general importance, but also since this is an area to a large extent
neglected by the software methodology community. Showing the relevance
of software engineering methodology to this area may then both open it up
for more research from the software community, and may also benefit the
practitioners in the computational modelling domain. The lack of familiarity
with this area for most software engineers has made us include material
describing more of the domain background than normal for case studies. We
feel this may be needed, in order for the reader to appreciate the complexity of
this kind of software and to gain an insight in why the proposed methodology
is beneficial for an area which has been self-sufficient for much of the time
since the early days of computing.

This paper is organised as follows: Section 2 sketches the use of alge-
braic techniques for investigating domain specific concepts and defining the
coordinate free numerics DSL. Then we sketch the problems we will use as
examples, both in order to validate the DSL, and in order to indicate the
potential of this approach. In Section 4 we discuss the software architecture
for the DSL and describe the Sophus software library which implements the
DSL. Section 5 presents how the sample problems were solved, how a version
of the DSL library adapted for the problems at hand were developed, and also
presents additional variations of the problem and solutions to these. Then, in
Section 6, we discuss the results achieved by following this approach. Finally
we summarise our findings in Section 7.

2. Developing the domain specific language

There is a long tradition in looking at software as a formal entity. This spans
from work in programming language semantics [Floyd 1967], via axiomatic
formalisms [Hoare 1972] and systematic development techniques [Dijkstra
1976] to development by program refinement [Back 1981] and proof tools
[Manna and Waldinger 1980]. One crucial observation is that a program
text can be moved between computers (and compilers), but that the results
computed may depend on the computer (a problem which is gradually re-
duced through standardisation). This leads to an acknowledgement of the
distinction between syntax and semantics. Such a distinction also exists
in the mathematical discipline of universal algebra, which originated with



246 M. HAVERAAEN, H.A. FRIIS, T.A. JOHANSEN

Whitehead [1898] and had matured by the 1960’s [Cohn 1965, Grétzer 1968].
In universal algebra the syntactic entities are called a signature and the se-
mantics a model for that signature. It took till the late 1970’s till universal
algebra, in the form of many-sorted universal algebra, was employed in com-
puter science [Goguen et al. 1975, Guttag and Horning 1978]. By that time
category theory [MacLane 1971] was also making an influence in how to struc-
ture mathematical concepts. Now universal algebra and category theory is

used together in the form of algebraic development methodologies [Ehrig et
al. 1998].

2.1 Domain investigation tools: algebraic specifications

A signature 32 declares a set of sort names si, ..., S,, and function symbols
J i 8iyy ey Sip = Sipiy, Where S;;,84,,...,8;, for m >0 are the argument
sorts and s;,, ., is the result sort (including the case m = 0 for a constant).
Obviously we may think of a sort as a type name or a class name in pro-
gramming language terms. A function symbol corresponds to a side-effect
free function or typed method. A procedure or method that changes its en-
vironment (has side-effects) can be decomposed into one or more side-effect
free functions and explicit assignments to program variables. So we may
treat a signature as idealised declarations in a program.

A model A for a signature X defines for each sort s of ¥ a mathematical
set A(s), called the carrier, and for each function symbol f : s;,...,s;,, —
8,1, @ mathematical function A(f) : A(s;,) x -+ x A(s;,,) = A(Si,.,). In
a programming context we may let A(s) be a data structure, perhaps coupled
with a data invariant, which defines the set of values that may be stored in
the data structure, or the subset thereof that satisfies the data invariant.
Likewise, A(f) may denote an algorithm, which defines a computable func-
tion from its argument data values to its result data values.

A specification restricts the class of allowable models for a signature. Al-
gebraic specifications only focuses on the properties that we want satisfied,
rather than devising specific constructions of models. Thus it is a rather ab-
stract approach, but permits both mathematical models and programming
language oriented models. The CASL specification language [Mosses 1997] is
an attempt to bring together and standardise various approaches to algebraic
specifications. Given a signature 3. and a specification, we may ask whether
an implementation satisfies the specification. Morris [1973] has addressed this
problem in a clear way and proposed it as a software development technique.
Meyer [1991] presents this technique as programming by contract. Object-ori-
ented programming languages have the modularisation mechanisms needed
for programming by contract, but not all provide direct support for it.

2.2 Domain concepts for partial differential equations

The computational modelling domain is that of mathematics, typically the
field of partial differential equations (PDEs).
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If we start investigating the problem domain concepts using algebraic meth-
ods, we will of course rediscover the basic structures of algebra (the inves-
tigation and generalisation of which led Whitehead [1898] to the discovery
of universal algebra): monoid, group, ring, field, vector space, linear map-
pings (matrices), tensors (which generalise rings, fields, vectors, matrices and
(multi)linear mappings), etc. Haveraaen et al. [1992] specify many of these
concepts in a start at analysing this problem domain using algebraic software
methodologies. As an example, a ring R has binary operations + (addition),
— (subtraction) and * (multiplication), and constants 0 (zero) and 1 (one).
These form the ring signature,

+ . RR—R,

— : R,R— R,
: RRR— R,

0 : =R,

1 : —R.

This is a slight deviation from the presentation in mathematics, where 0
and 1 are perceived as elements of the carrier, rather than symbols of the
interface, and the additive inverse is treated the same way. An algebraic
specification of a ring could be the following, where a, b, ¢ range over all ring
elements R.

(a+b)+c = a+(b+c), (1)
a+b = b+a, (2)
(axb)xc = ax(bxc), (3)
(a+b)—b = aq, (4)
0O+a = a, (5)
lxa = a, (6)
axl = a, (7)
(a+b)xc = (axc)+ (bxc), (8)
ax(b+c) = (axb)+ (axc). 9)

Here we see that any model for a ring must obey the laws that addition is
associative (1) and commutative (2), subtraction is the inverse of addition
(4), and multiplication is associative (3) and distributes over addition in the
familiar way (8-9). Further, the neutral element with respect to addition
is denoted by 0 (5) and the neutral element with respect to multiplication
by 1 (6-7). If a neutral element exists it is unique. Likewise the inverse
element is unique if it exists. We may then ignore the operations 0, 1 and
—, right up until the moment they, and their properties, are needed again.
This simplifies the specification of, e.g., linearity of a function L : R — R to

L(a+0b) = L(a)+ L(b), (10)
L(axb) = ax*L(b), (11)
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because equations such as L(0) = 0 and L(a—b) = L(a) — L(b) can easily be
derived. Reducing the textual size of a specification by removing redundant
details makes the important points clearer.

Continuing the analysis process for the realm of PDEs we note that a
basic assumption is that every spatial point in the physical world, such as
a 3-dimensional section of the earth, can be represented by an element of
a set M called a manifold. The physical properties are then ascribed to
each point in the form of a wvalue field, akin to a function from the manifold
to some value domain. A value field has the same algebraic properties as
the value domain itself. If the values at each point are reals, such as those
for pressure or density, they are said to form a scalar field. A scalar field
has ring properties. If they are vectors, such as those for particle displace-
ment, they are said to be vector fields. A vector field likewise has vector
properties, with the corresponding scalar being the scalar field. The val-
ues may also be matrices, linear or multi-linear mappings, or some other
form of data, such as tensors, which generalise scalars, vectors, matrices and
multilinear mappings. Tensor fields correspondingly are tensors over vector
and scalar fields. If the manifold has sufficient structure, at least a notion
of proximity and direction, we may define integration (interior and surface
integrals) and differentiation operators on the value fields, such as Lie de-
rivatives, gradients, and divergence, provided the value fields are smooth
enough. A time dependent partial differential equation provides a relation-
ship between spatial derivatives of tensor fields representing physical quanti-
ties and their time derivatives. Given constraints in the form of the values of
the tensor fields at a specific instance in time together with boundary condi-
tions, the aim of a PDE solver is to show how the physical system will evolve
over time.

Haveraaen et al. [1992] sketched the algebraic specification of many of these
concepts. Although they are standard mathematical concepts, they are rarely
presented strictly as a signature with axioms. Doing a proper algebraic spe-
cification required work which became more involved as we approached the
more advanced concepts, but no really hard problems occurred. However,
a noticeable effect was that we were moving from the normal indexed-based
presentation of the concepts, and in the direction of coordinate free mathe-
matics, as we pursued identifying the concepts involved. This may be because
our analysis tool, algebraic specifications, favours the use of high-level, ab-
stract concepts. A coordinate free formulation is valid independent of the
choice of coordinate system, i.e., it will be valid whether we use cartesian co-
ordinates, cylindrical coordinates, or some other curvilinear coordinate sys-
tem. This readily gives a much greater flexibility in choosing implementation
strategies: some coordinate systems simplify the implementation of the op-
erators and boundary conditions by introducing symmetries and vanishing
terms (terms that will be 0 and thus may be eliminated from the compu-
tation), while other coordinate systems may improve numerical accuracy
or reduce the amount of computation needed. From this it appears that
coordinate free mathematics is a much more versatile framework than the
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indexed-based one. An introduction to coordinate free mathematical physics
can be found in [Schutz 1980].

2.8 Domain notation versus programming notation

Blending the coordinate free DSL into a programming language raises an
observation about the relationship between DSLs and DSELs. Mathematics
and the specifications’ notation favour use of functional and operator style
expressions. An object-oriented programming language like C++ [Stroustrup
1997] favours implementations using an imperative style, where argument
variables are modified or mutated. As an example, consider an infix binary
operator like +. C++ allows the declaration of an operator

template<class T> T + (const T & a, const T & b) const;

which is used in infix notation as a+b, returning the sum as a value. The
operator preferred by the object-oriented style is

template<class T> void += (T & a, const T & b);

which is used infix as a+=b, but where the left argument is modified to con-
tain the sum of the two variables. C++ itself does not have any intrinsic
semantical restrictions on these operators, so there is no formal relationship
between the two user-defined operations. (In essence, neither operator may
have anything to do with summation at all.)

Since we are working with mathematical concepts it is natural to allow
the user to write expressions involving +. The template class parameter T
may represent several megabytes of data, so an implementation using += will
definitely be more efficient. We solved this by imposing requirements on
the use of symbols such that there would be a clear semantical connection
between functions/operators and their mutating counterparts, not just for
the built-in operators in C++. A few rules expressing this connection is
given in the following table.

a=a*+c; — a += c;

a=>b+ c; < a =Db; a += c;

a=a*xc; — a *x= c;

a=D>b *x c; <—— a = Db; a *= c;
a=bx*xc+a; > {t=a a=Db*c;a+=t;}

These may be used to (1) generate an operator declaration for +, x, etc.,
whenever a declaration for +=, *=, etc. is seen, and (2) rewrite expressions
using +, *, etc., to an equivalent code segment using only =, +=, *=, etc. This
is described in more detail by Dinesh et al. [1998], who also compare the
run-time efficiency of the two styles.

3. Validating the domain specific language

We need to check the usefulness of the DSL by making sure that we can use
it to express (and solve) problems in the domain and that its concepts are
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implementable. Only then will the DSL be valuable as a tool for developing
programs. But implementability does not necessarily require exact compli-
ance with the specification, in which case numerical programs would not
exist since it is impossible to represent exact real arithmetic on any known
computer architecture. Rather, we need a pragmatic notion of compliance,
a notion that will accept programs that deliver useful results.

3.1 Usability: elastic wave simulation problems

The problems we will use to illustrate requirements of computational mod-
elling are taken from the oil industry. Here the application of elastic wave
modelling for the interpretation of various acoustic data from potential hy-
drocarbon reservoirs, is important. Repeatedly solving the corresponding
PDEs for different data sets requires the use of high performance computers.

The recovery of the geological subsurface structure, i.e. the origin and the
geometrical picture of the geological layers, is of vital importance in devel-
oping prospects of hydrocarbon reservoirs. Also, in order to obtain optimum
production strategies for existing oil and gas fields, detailed acoustic illumi-
nation of the target zones is required. The target zones are generally quite
heterogeneous where the geological and reservoir properties vary within a
few metres. Thus, any modelling tool has to be capable of handling hetero-
geneous models in 2 and 3 dimensions with quite good resolution.

The seismic method is an active remote sensing technique, where the acous-
tic wave field, generated from a man made elastic impulse, is recorded on
so called geophones at different spatial positions in the earth. The most
common experimental setups are: marine seismics (source and geophones
(hydrophones) are at the sea surface), well-to-well or surface-to-well seismics
where the source is in a borehole or at the sea surface and the geophones are
within a borehole, and ocean bottom seismics where the geophones are sited
at the seabed. In all these experiments, the elastic impulses are of relatively
low frequency, e.g. 5 — 100Hz. This energy illuminates geological structures.
The picture arises from reflection and conversion of pressure (P) and shear
waves (S) at layer interfaces, where the physical properties of the adjacent
rocks are discontinuous. By combining the reflection data with estimates of
the P or S wave velocity, a geometrical picture of the interfaces is produced.
Normally a whole series of recordings are taken with small variations in the
position of the source and the geophones.

For all these studies, the assistance of an acoustic wave modelling tool is of
vital importance for the confidence of the information retained from the data.
The aim is that acoustic wave simulations on the estimated model coincide
with the acoustic recordings of the real world. This requires the acoustic
simulation software to be able to place virtual geophones at any position
within the simulated area. The simulation itself extends from sealevel and
several thousands of metres downwards into the earth. A simulation which
is repeated with small variations in the positioning of the virtual geophones
and virtual source.
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The mathematical equation describing the elastic wave simulation problem
is taken to be the elastic wave equation,

p% = V.o+ _‘(t)a
o = Ae), (12)
e = Lg(g)

The scalar field density p and the stiffness tensor field A are given data that
vary within the physical domain, in accordance with the varying geophysical
properties of the rocks. The particle displacement vector field  represents
the propagation of the seismic wave and will be recomputed at every iteration
of the solver algorithm. The tensor field g defines the coordinate system used,
the tensor fields o and e are computed intermediate values, and f(t) is a time-
varying vector field representing the forces from the elastic impulse. The V-
and Lz are derivation operators, the latter dependent on the displacement .
A fundamental assumption here is that the materials are fully elastic. The
elastic wave equation is a standard equation from mathematical physics, and
may be found in any textbook on the subject. Its application to seismics
is discussed in much detail by Aki and Richards [1980] and Marsden and
Hughes [1983]. Eq. (12) is in coordinate free form, i.e., all the entities and
operators belong to the coordinate free DSL, validating its usability.

Elastic wave simulation is a very compute-intensive task, where one simu-
lation easily may take several hours. Important factors here are the spatial
resolution and frequency of the source. Increased accuracy requires a larger
data set, more simulation steps, and consequently increased computation
time. Another factor is the complexity of the physical properties of the
geological models. In the simplest case, the model is denoted as isotropic
inferring that the P and S wave speeds are independent of the wave propa-
gation direction. The isotropy introduces symmetries in the stiffness tensor
A of Eq. (12), so that the amount of computation can be greatly reduced.
An earth model of more general elastic properties, denoted as anisotropic,
implies that the wave velocities do generally depend on the wave propagation
direction. However, most earth materials have a rotational symmetry in the
stiffness properties. In general, this is for an axis perpendicular to the in-
ternal layering of the material, but often restricted to be perpendicular to
the layer surface. The latter materials are denoted as transverse isotropic,
and more symmetries are introduced in the stiffness tensor, but not as much
as in the isotropic case.

Fig. 1-4, produced by SeisMod (see Section 5), illustrate some examples
of elastic waves propagating outward from a point source (producing an
elastic impulse) located within various types of materials, taken at diffe-
rent times after the impulse was initiated. The propagation medium is here
2-dimensional, 1km by 1km and homogeneous (i.e. no alteration in the stiff-
ness tensor within the grid). The elastic impulse is described by a Ricker
pulse of 30Hz centre-frequency. For the isotropic case, we consider a source
in water where no S wave exists. The other simulations are based on media
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Fig. 1: Isotropic case, seismic waves Fig. 2: Isotropic case, seismic waves
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Fig. 4: Transverse isotropic case with
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seismic waves 100ms after the pulse
started.

Fig. 3: Transverse isotropic case with
vertical axis of symmetry, seismic waves
100ms after the pulse started.

with the same density and similar wave propagation velocities. In case of a
transverse isotropic material, we clearly see the effect of the directional vari-
ation in wave speeds (in particular for the P wave), and a separation between
the faster moving P wave and the slower moving S wave. The final example
shows a wave field occurring within a strongly anisotropic medium. Here the
wavefronts are strongly deformed from the circular shape associated with
isotropic media, or the more ellipse-alike shape associated with transverse
isotropic media.

As the computation time, which may be on the order of several hours,
increases by a factor of more than two from the isotropic to the anisotropic
case, there is a clear demand for program versions being as specific as possible
for the different cases. Also, there is a need for each program version to



FORMAL SOFTWARE ENGINEERING 253

run sequentially on single workstations, in parallel on a network of such
workstations, and on supercomputers with multiple processors.

3.2 Implementability

There are a host of numerical methods that provide implementation strategies
for scalar fields, but neither provides an exact representation of a scalar field.
A discretisation method will only provide a more or less inaccurate represen-
tation of a scalar field, but an approximation that given some assumptions is
close enough to provide useful results. The more well known approaches are
finite difference methods, finite element methods, finite volume methods, and
spectral methods. The discretisation methods vary in software complexity
both at the level of scalar fields and the level of equation solvers (see Sec-
tion 4.3). The choice of numerical discretisation method depends to a large
extent on the properties of the PDE to be solved and thus on the applications
that are to be developed. Generally, finite difference methods are among the
simplest to implement, with finite element methods being among the most
difficult with respect to implementation and use.

The elastic wave equation is a good equation to start with from this point
of view, as it works well with the finite difference discretisations. This means
that we may initially avoid unnecessary complications both when formulating
the solver and when implementing the scalar fields — nice properties for a
prototype implementation.

4. Software architecture and DSL structure

4.1 Structuring concepts

A collection of related mathematical structures, such as the data structures
of a programming language, typically form a category [Goguen 1991]. A
category C is a collection of objects A, B, ..., and morphisms f : X — Y,
with an associated associative composition rule o on morphisms and a neutral
morphism (with respect to o) for each object. We will use the category
Prog as our prime example. The objects of Prog are data structures, and
the morphisms are all side-effect free algorithms from a data structure to a
data structure. The identity morphism and composition rule for morphisms
should be obvious. Functions of more than one argument are defined from
special data structure objects called product objects in the category. The
category Set is a standard example from mathematics of a category. It has
sets as objects and total functions between sets as morphisms.

Categories are related by functors, functions between categories. A functor
F : C — D, from category C to category D, maps objects to objects and
morphisms to morphisms such that identities and compositions are preserved.
It is not hard to construct a functor from Prog to Set that relates the data
structures and algorithms (for one specific computer) with the sets of values
and mathematical functions being computed.
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Functors are in many ways like C++ template classes [Stroustrup 1997]
or Ada generic packages [Barstow 1983]. These mechanisms will take a data
type as argument and define a new data type based on it. We may for instance
define a generic list package with a type parameter, such that whenever
we instantiate the package with a data structure D, we get a data structure
list of D. The idealised functor version of data type constructors have some
additional properties. A list data constructing functor L : Prog — Prog
takes a data structure D and returns a 1ist of D data structure L(D). But
in addition to defining the list data type, it will take any function f : D —
E and define an iterated function L(f) : L(D) — L(E). When L(f) is
given a list of D as argument it will perform f on every element of the list,
returning a list of F with the results. Likewise we may treat array data
structure constructors as functors. For every index type I we have an array
constructing functor Ay : Prog — Prog which takes an element object E
and defines an array [I] of FE, the array structure with elements of type
E. But we also get the iterated functions, so given for instance a binary
operation + : £ x E — E we have Aj(+) : Aj(E) x Aj(E) — A;(E) which
adds, componentwise, i.e., for each index i € I, the elements of the two
argument arrays, yielding a new array with the summed values. This is very
convenient, and may only be simulated by explicit programming of these
functions in current programming languages. Unfortunately, this is not fully
sufficient, as the generic package mechanisms do not have enough power to
let us do this once and for all. (We omit the technical discussion of these
deficiencies.) A nice observation is that the array constructing functor can
be used to generate the value fields for a manifold M by simply applying
A g to the appropriate value domain, such as the reals, vectors or matrices.
We can also use these functors to define finite dimensional vector spaces by
the expression Aygq  ,3(R), for appropriate natural numbers n and the ring
R of real numbers.

A good modularisation of software is achieved if we minimise the number
of distinct functors, and the software complexity of each, needed to build the
application software. How we combine the functors to achieve these entities
will be a blue-print for the software architecture. Good choices here have
large potential for greatly reducing the software development effort. Both
by directly reducing our coding effort, and, more importantly, by identi-
fying reusable components for other applications in related problem domains.
Carefully structuring the modules reduces our coding effort and reusable
software components are identified. This is work at the software architecture
level. In the algebraic specification language CASL, for instance, this kind
of software architecture can be explicitly defined [Bidoit et al. 1999].

4.2 Structuring the problem domain

Now we need to analyse the problem domain in order to find the concepts that
we can use in structuring our software. Our approach to formal software en-
gineering is to use algebraic techniques, specifically category theory, for this.
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When developing the DSL, Section 2.2, we pointed out that a scalar field
has ring properties. A vector field is a value field with vectors, such that the
vector fields form a vector space with the scalar field as the ring. As a con-
sequence, n-dimensional vector fields over a manifold M may be constructed
by either of the two approaches:

(1) applying the value domain construction to vectors, Ax(Ag,.. n}(R)),
or

(2) applying the vector construction to scalar fields, Ag 1 (Am(R)),

and similarly for tensor fields. There does not seem to be any immediate
reason to prefer one over the other, and conventional numerical software
uses the first construction. However, a closer scrutiny of the problem do-
main reveals that a tensor field contains advanced integration and derivation
operations which are not definable from the tensor abstraction, but requires
access to the value field properties, i.e., to the discretisation.

o Applying the value domain construction A to vectors (Ag  ,1(R))
as in construction (1) makes us rebuild the discretisation for every level
of construction, i.e., one for scalar fields, another for tensor fields etc.
This was observed in the tensor oriented implementation reported by
Verner et al. [1993].

o But the integration and differentiation operators of the vector field
Ag1,..ny(R) for arbitrary scalar field R in construction (2) may be ex-
pressed from operations like integration and partial derivatives on the
scalar fields R = Apm(R).

This reveals that apparently equivalent constructions from a data structure
and algorithmic complexity viewpoint, may have dramatically different soft-
ware complexity. Based on these observations it is clear that a more fruitful
approach is to use the second construction above as starting point. Instead of
building many different constructors for the value domains (vectors, matrices,
linear mappings, etc.), we note that it suffices to build a tensor constructor,
which, given certain assumptions, encompasses all these. Tensors also give
us the building blocks needed to define coordinate free operators. The imple-
mentation may then be reduced to build a constructor for scalar fields and a
constructor for tensor fields.

The functor Sy : Prog — Prog for the construction of scalar fields may
be implemented by amending the construction A4 such that it also includes
the definition of integration and partial differential operators. The tensor
constructor Ty; ) : Prog — Prog amends Ay 3 with the integration,
general derivation operators and other tensor operators, assuming that the
template parameter has an appropriate interface. The tensor field construc-
tion for a manifold M then becomes Ty 1 (Sm(R)). If the tensor exhibits
symmetries, we may be able to use a constructor Ay ), where m <n, as
data structure.
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4.8 Software architecture for PDE problems

Our analysis of the PDE domain has given us the components we need for the
software architecture. It has also provided us with a problem domain specific
language and specifications of the types and operations that we need. But
we also have to make sure that this really can work as a framework for
implementing numerical methods. In this analysis we need to consider the
issue of developing both sequential and parallel versions of the software.

The different components involved in a numerical solution of a PDE can
be factored in three layers:

(1) The numerical discretisation methods which makes it possible to rep-
resent the value fields Sy for the infinite set M by a finite approxima-
tion. The discretisation will need to provide the ring operations and
the partial differentiation operations. S will need to contain a large
set of values, often up to a million or more, in order to provide a good
approximation. To represent the data values on M it is convenient to
use the functor Ay, for some suitable index set I, as data structure.

(2) The tensor construction 1, ny 1s where coordinate systems are han-
dled and the advanced differentiation operations are implemented. The
construction should work with any scalar field, i.e., with any discreti-
sation of a scalar field as well. Conceptually Ty, is an extension of
Aq1,...my, for some m < n, and using the latter as the data structure
seems natural.

(3) The uppermost numerical layer is the solver algorithm itself. Here the
time discretisation is decided, and the iterator that will generate the
transient behaviour (such as for a seismic simulator where we are in-
terested to know how the seismic wave propagates) or the steady state
solution (for instance if we want to find a steady state flow pattern) is
implemented. These algorithms are often normalised, i.e., the numbers
they work with are scaled to be around 1.0, where the numerical res-
olution of the machine is best. The numbers are then scaled back for
input/output purposes and as needed by the solver algorithm.

Using the array constructor to implement both the numerical discretisation
and the tensor construction allows for a reuse of the array module. But
more importantly it allows a separation of concerns when implementing these
modules: the array constructor may focus on the data layout pattern, while
the numerical modules may focus on the numerical aspects, using the array
construction for the storage aspects. The architecture also implies that we
only need to relate to, and thus implement, the discretisation method when
we implement the scalar field, and that the vector and tensor field implemen-
tations are independent of this choice. If we need to change discretisation
method, this will be localised to one module, and not being spread out all
over the code, which is the normal case with traditional numerical software.

This also provides a route to parallelisation. We will, at the scalar field
level at least, have a large collection of data values that may be distributed in
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a dataparallel fashion [Bougé 1996]. Actually, it suffices to provide a parallel
implementation of the array constructor to get a parallel version of the whole
program. Haveraaen [1998] discusses this.

4.4 The Sophus library

The software architecture developed in the previous section is implemented
by the Sophus software library. It provides the abstract mathematical con-
cepts from PDE theory as programming entities. Its concepts are based on
the notions of manifold, scalar field and tensor field, while the implementa-
tions are based on the conventional numerical algorithms and discretisations.
Sophus is structured around the following concepts:

o Basic n-dimensional mesh structures M,, : Prog — Prog taking a ring
R as argument. A mesh is an array constructor A{l,...,kl}x...x{l,...,kn}7
and includes the definition of the general iterated operations. Specific-
ally, operations like +, — and # are iterated over all elements (much
like Fortran-90 array operators [Adams et al. 1992]), and operations
to add, subtract and multiply all elements of the mesh by a scalar
are included. There are also operations for shifting meshes in one or
more dimensions. Operations like multidimensional matrix multiplica-
tion and equation solvers may easily be implemented for the meshes.
Sparse meshes, i.e., meshes where most of the elements are 0 or have
some other fixed value, may also be provided. Parallel and sequen-
tial implementations of mesh structures can be used interchangeably,
allowing easy porting between computer architectures of any program
built on top of the mesh abstraction.

o Manifolds M. These define sets with a notion of proximity and direc-
tion which represent the physical space where the problem to be solved
takes place.

o Scalar fields Spq. They describe the measurable quantities of the phys-
ical problem to be solved. As the basic layer of “continuous mathemat-
ics” in the library, they provide the partial derivation and integration
operations. Also, two scalar fields on the same manifold may be point-
wise added, subtracted and multiplied. The different discretisation
methods, such as finite difference, finite element and finite volume
methods, provide different designs for the implementation of scalar
fields. Scalar fields are typically implemented using the basic mesh

structures for data.

o Tensors Ty ,). These provide coordinate free mathematics based
on the knowledge of the coordinate system, whether it is cartesian,
axisymmetric or general curvilinear. The tensor module provides the
advanced differentiation and integration operations, based on the par-
tial derivatives and integrals of the scalar fields. Tensors also provide
operations such as componentwise addition, subtraction and multipli-
cation, as well as tensor product, composition and application. The
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implementation uses the basic mesh structures, with scalar fields as
the ring parameter.

Using Sophus, the numerical equation solvers are formulated on top of the
coordinate-free layer, forming an abstract, high level program for the solution
of the problem.

5. Implementations: DSL library and elastic wave simulators

In Section 4 we have investigated the structure of the DSL and decided what
basic components it consists of and how the DSL can be built from these
components. We also studied, in Section 3.2, the implementability of the
DSL, but postponed the decision about which discretisation method to use
till we had an application that would require the use of a specific method.
The usefulness of the DSL was validated in Section 3.1 where we formulated
the elastic wave problem.

Here we will start the design of SeisMod, a collection of elastic wave sim-
ulators, and use this to decide which variant of the library modules to im-
plement. The piecewise implementation of the library this implies should be
seen as a normal way of maintaining the library, making it more complete
and versatile as time goes. But such an incremental building will only work
out if the library architecture is well thought out, i.e., mature, so that a
reorganisation of the library will not be required as the library is gradually
built.

The elastic wave simulators we are using as our example provide some
additional complexity for the solver design. This is due to the boundary
conditions of the problem. Since we must do our simulations in a finite com-
putational domain, the seismic waves should ideally leave the domain when
reaching the boundaries. This can not be achieved without special numerical
treatment. The upper boundary (for instance the sea/air border) must also
be handled specially in order to obtain the proper physical behaviour. These
problems are solved by implementing a boundary-aware scalar field on top of
the plain scalar field discretisation. This boundary aware scalar field is then
used when instantiating the tensors.

This leaves us with the following main software modules for the seismic
simulators:

o Mesh: domain information, index set, and the basic n-dimensional
meshes in sequential and parallel version.

o Tn: domain information, manifold, and n-dimensional toroidal scalar
field (no boundaries).

o Bn: domain information, manifold, and n-dimensional scalar field with
boundaries.

o Tensor: tensors with differentiation operators.

o Seismod: the solver algorithm in coordinate free form.
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The following subsection describes a basic collection of solver programs for
the seismic problem. Then we describe variations of the seismic problem
which exercise the flexibility of the software architecture developed above.
All the variations we develop are captured in Table I, which identifies 32
versions of elastic wave simulators.

TABLE I: Some configurations for SeisMod.

| Configuration | seismic | ultrasonic in borehole |
Mesh D D
SorP SorP
Tn D D
S S
Bn D D
SorU 0]
Tensor SIor TI or TA Ul or UTI
Seismod SE or PE SE or PE

Legend:
e D is domain information, such as shape and indices or elements of a manifold.
Mesh S is sequential implementation.
Mesh P is parallel implementation.
Tn S is staggered finite difference implementation.
Bn S is sea surface boundary handler, i.e., the scalar field extends all the way up
to the sea surface.
Bn U is underground boundary handler, i.e., the scalar field is surrounded by rock.
Tensor SI is standard isotropic.
Tensor TI is transverse isotropic with vertical axis of symmetry.
Tensor TA is transverse isotropic with arbitrary axis of symmetry (very close to
full anisotropic).
e Tensor Ul is ultrasonic for borehole with isotropy (cylindrical coordinates).
e Tensor UTT is ultrasonic for borehole with transverse isotropy (cylindrical coordin-
ates).
e Seismod SE is standard elastic.
e Seismod PE is poro-elastic.

5.1 A basic collection of simulators

The original elastic wave simulator problem, see Section 3.1, was described
for a general 3-dimensional earth with any complexity and heterogeneity
in the physical properties (density and stiffness) within this model. In full
generality, this should infer a stiffness tensor A of Eq. (12) at each grid point
to have 3* = 81 components. However, the physical constraints implied by
considering a linear and infinitesimal deformation theory, cause the stiffness
tensor to contain at most 21 different components. The computational effort
may in some cases be reduced by using 2D models. Such models are good
approximations when the earth models vary only slowly perpendicular to the
considered 2D plane. Implementing this, using cartesian coordinates and for
the isotropic simplification, reduces the number of distinct components in
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any tensor involved in the computation to at most 3. Even if we assume
the more general anisotropic case in 3D, we never need more than 7 distinct
components. But this reduction of storage and computations comes at a
price: all the algorithms in Tensor must be specially adapted to the combined
choices. So we need three distinct Tensor implementations, one for each of
isotropic (SI), transverse isotropic (TI) (assuming vertical axis of symmetry),
and anisotropic (TA) cases.

Using a sequential Mesh in the implementation of Tn gives a sequential
implementation of the seismic simulators which will run on any machine
with a decent compiler. We may then exchange this with a parallel Mesh to
achieve a parallel version of the simulators. Implementing Mesh using MPI
[Snir et al. 1996] gives us a code that can run on any machine configuration
supporting MPI, such as a network of workstations or a multiprocessor.

The seismic simulator has been implemented for all the three rock model
complexities both for sequential execution and parallel execution on a net-
work of workstations and on a multiprocessor supercomputer. This provides
a total of 6 source versions for these different machine architectures: Mesh S
or P, Bn S, Tensor SI, TI or TA, and Seismod SE.

5.2 Modelling of ultrasonic measurements in boreholes

While the typical seismic experiments reveal earth models several kilometres
wide and deep, acoustic measurements in boreholes are performed to retrieve
details of the material properties in the close vicinity of the well. Here both
high-frequency P, S and surface waves are studied in order to depict the
zones to be carefully handled during the production and injection phase.
The near borehole reservoir properties are important both for the estimate
and production of the hydrocarbon fluids. In an analogous way to seismics,
these properties are sought for by ultrasonic acoustic experiments. In this,
a source and an array of transducers are placed within the borehole. Here
acoustic waves within the range of 5 — 20kHz are considered. For these
frequencies the acoustic waves illuminate only some few decimetres of the
surrounding formation. In these experiments P and S waves and boundary
waves occurring in the borehole wall are considered.

From a modelling viewpoint, the problem is simplified if we consider the
earth model to be symmetric around the borehole, i.e., it is axisymmetric
with the well bore itself as the axis of symmetry. This is very useful since
then the 3D problem becomes a 2D problem using cylindrical coordinates,
resulting in a corresponding reduction of CPU-time. This implies the need to
create a new implementation of Tensor. Unfortunately, since the geological
model complexity also influences the implementation of Tensor, we need to
create different versions of it, if we are to cater for the various geological
models (isotropy, transverse isotropy, anisotropy). However, two versions is
enough, since we in the case of transverse isotropy, only need to consider an
axis of symmetry parallel with the borehole.
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Furthermore, we here also have to take into account that the boundary
conditions in the borehole are different from those on the surface. So we
need a new Bn with open boundaries in all directions.

Thus we need 3 modified implementations to cater for the requirements of
the borehole problem (Bn U and Tensor UI and UTI). But the changes are
not radical from the original versions, and more than 50% of the code of
the modules we replace can be reused in the creation of these modules. A
fact which in some cases may be made explicit by the use of inheritance.
The changes do not affect any other modules, nor how they should be fitted
together. We also get similar parallel and sequential versions without any
further implementation effort, giving us, all in all, 4 new seismic simulators.

5.8 Modelling of seismic tomography experiments

The variants of modules we have defined allow us to configure yet another
version of SeisMod, a system for seismic tomography simulation. This is
when an elastic impulse is initiated at the surface or within a borehole, and
the geophones are placed in surrounding boreholes. The modelling is here
to compute the purely transmitted wavefield. We already covered the case
when the tomography extends to the surface in our original simulators. But
if the target area is entirely subsurface, we only have to apply the under-
ground boundary handler Bn U. This may be combined with any of the
Tensor versions SI, TI or TA, and of course with a sequential or parallel mesh
implementation, increasing the number of specific simulators from 6 seismic
and 4 ultrasonic to 12 seismic and 4 ultrasonic.

5.4 Modelling of wave propagation in poro-elastic materials

The hydrocarbons we want to investigate are stored in porous rocks. So the
elastic waves will propagate in two-phase materials, or poro-elastic materi-
als. In particular, the use of a poro-elastic modelling may describe several
wave phenomena observed in ultrasonic borehole data. Typical poro-elastic
materials are high porosity rocks containing viscous fluids. In such materi-
als the particle displacements, associated to an induced stress field, of the
solid skeleton and the fluid may differ. This physical system is described
by two coupled equations of motion, which, accordingly, have to be solved
simultaneously. The pioneering, mostly analytical work of Biot [1955, 19564,
1956b] reveals the existence of two P waves and one S wave. The two P
waves are usually denoted the fast and the slow P wave, where the fast P
wave propagates mainly within the skeleton, but modified by the presence of
the fluid. The slow P wave, accordingly, propagates mainly along the fluid
phase and is modified by the skeleton. The fast P wave carries the main P
wave energy, while the slow wave is mainly of phenomenological character.

The modelling of poro-elastic materials is receiving increased attention with
the demand for a more precise elastic wave simulation in reservoir zones. The
coupled set of equations to be considered are
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Here the displacement vector fields are @ for the solid and U for the fluid.
Likewise the tensor fields o and e of Eq. (12) get companions s and e, re-
spectively. Further the stiffness tensor field A is split into four tensor fields
A, Q, M and R, representing the stiffness of the two phases and their inter-
action. We also get three density coefficients p;; and a friction tensor field b,
as well as a porosity q. The operators remain basically the same, but we get
an additional derivation operation V. Still, the formulation in Eq. (13) is in
coordinate free form, as required for our DSL.

Even though these equations are very different from Eq. (12), we see that
all the concepts involved are tensor fields and tensor field operations. The
new equations initiate a new implementation of Seismod, the PE version. In
principle no other module needs modification, and this would be the case if
we had used a fully general tensor field class implementation. However, as we
decided to implement specialised tensor class versions for SI, TI, TA, Ul and
UTI, our incremental implementation policy means that these may not cater
for the requirements on data formats and algorithms from the new tensor
fields and tensor field operations. These additions will mostly be the same
across versions, but not quite, implying that we should analyse the situation
with specialised implementation versions further. With these amendments,
poro-elastic materials may now be embedded in geological models for either
large-scale seismics or ultrasonic experiments in boreholes, doubling the num-
ber of elastic wave simulators from 16 to 32.

6. Results achieved

6.1 Program development productivity

In the previous section we have shown that the Sophus PDE software ar-
chitecture has made it easy to pin-point exactly which module needs to be
modified when requirements are changed. Besides the obvious intuitive ben-
efits from this, there are definite quantitative benefits as well. This can
be seen when considering various cost estimating techniques, of which the
COCOMO model by Boehm [1981] is the most well known. Essentially, a
model like COCOMO correlates the cost of developing a piece of software
with the size of the software. More advanced estimation techniques take into
account the software complexity as well. Experience, as captured by the
cost models, shows that cost grows more than linearly in program size, both
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for development and maintenance. Thus halving the code that needs to be
modified in order to meet new requirements, more than halves the cost of
the modification.

Table II relates different modules in the Sophus library to the size of the
code that implements them. The versions that can be generated were dis-
cussed in the previous section, and summed up in Table I. The total number
of lines has been tallied under four sets of columns. The first tally repre-
sents the lines of code needed for the standard seismic simulator (cartesian
coordinates, isotropic rock model, sequential), disregarding other support
modules and configuration files. This tally will be used as the reference cost
of developing a seismic simulator. The second tally gives the total number
of lines needed to create the 5 additional simulator versions described by
the original requirements specification in Section 3.1. The third tally gives
the total number of lines for the 4 versions of ultrasonic, axisymmetric bore-
hole acoustics. This also gives us 6 versions of underground tomography,
giving a total of 16 versions of elastic wave simulators. The last tally, for
the PE column, gives the cost of the poro-elastic version. In the tensor row
for this column we have included the total number of lines to be amended
to the tensor classes due to the new tensor operations and data required by
poro-elasticity. Note that the size of the variants in general gives a too high
estimate of the cost for creating a version, since much of the code from the
original version of a module can be reused.

TABLE II: Indicative sizes of the modules in lines of code. The legend is given in Table I.

| Module || D ] S/SI/SE H P | TI | TA H U/UI | UTI ” PE ]
Mesh 2000 2000 || 2700
Tn 1700 1600
Bn 1500 1900 2100
Tensor 1000 1000 | 1800 1000 | 1100 || 1200
Seismod 600 700
~ ~—
Total: 12300 5500 4200 1900

Investigating some specific example configurations, we see that creating
a parallel version of Mesh only costs two thirds of that of implementing a
full Mesh, since we do not need to reimplement the domain and index types
(column D). The cost of the parallel code represents redeveloping less than
25% of the full program. Once the parallel module has been developed, it can
be freely mixed with any version of the program, yielding a parallel version
of that program for no additional cost.

Shifting from the isotropic version to one of the anisotropic version repre-
sents a redevelopment cost of 8%-15% of the software cost, as can be seen by
the changes needed, which only affects Tensor. Achieving parallel versions
of the anisotropic codes now comes for free. So the development of all the 6
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versions asked for in Section 3.1 adds less than 50% to the cost of developing
the first version.

Creating the borehole version of the seismic simulator means we have to
upgrade both the Bn and the Tensor modules. The former due to the change
of boundary conditions, the latter due to the use of cylindrical coordinates
to improve efficiency. These changes represent a total cost of less than 35%
of the reference program code. In fact the modifications involve much less
than 50% of the 4200 lines listed, bringing the cost of the borehole version
down to about 15% of the development costs. We get a parallel borehole
version for free. More interestingly, the revised Bn implementation may be
combined with the other tensor classes to yield a underground tomography
simulator. This adds 6 new seismic simulator versions for free, in addition
to the 4 borehole versions we consciously developed.

This gives us a tally of 16 versions of the seismic simulator, counting sequen-
tial and parallel versions. The total cost of the 15 extra versions developed
represent less than 80% of the development cost of the initial simulator. If
we amortise the total cost of developing all the 16 versions, we end up with a
development cost of each in the range of 10%—-15% of the development of the
initial program. Recognising that the number of versions will double when
coding the poro-elastic version (the last column), we see that the average
development cost of a version drops to less than 10% of the initial develop-
ment costs. Assuming the existence of a fully developed library, we see that
the marginal cost of writing a new program may easily become less than
10% of the development cost of a full program. The most notable case is
when we may obtain 16 poro-elastic versions at a total cost about 15% of the
cost of the reference program, even though the change in the mathematical
equations are large. This is a tremendous gain in software development pro-
ductivity over traditional development. A clear demonstration of the benefits
of software reuse, contingent on a flexible and robust software architecture,
i.e., a mature software design.

6.2 Discussion

It can be argued that all of these examples are taken from the same small
area within PDE. Thus we have only shown that these gains are achievable
when many closely related versions of a program are to be developed. This
may be the case, but Grant et al. [1998] applied the Sophus software archi-
tecture to solve computational fluid dynamics problems. In their case study,
many new implementations were needed. Almost all were instances of the
Sophus modules already identified here, and none required a modification of
the library architecture. This supports our view that the Sophus software
architecture is mature. In general we see that a new discretisation method
will obviously require a new scalar field implementation, new equations to be
solved require new top level solvers, etc, but all within the same framework.

Comparing this with experience from other numerical libraries for solving
PDEs, e.g., reports by Budge et al. [1992] and Verner et al. [1993], we note
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that Sophus seems to avoid many of the difficulties and added costs that often
appear when extending the domain of a library. Typical problems that have
been identified by library designers include inappropriate abstractions and
inappropriate architectures. In the problem domain we have presented here,
an inadequate abstraction could be a coordinate system dependent definition
of the operators. Then Eq. (12) and Eq. (13) would need to be changed ac-
cording to what coordinate system was to be used (this is the normal case
in current computational models). The choice of an inappropriate architec-
ture shows when using the construction Ax(Aqy,.. n)(R)) directly as data
structure for vector fields. Then both scalar fields and tensor fields embody
the discretisation method, meaning that discretisation code is duplicated in
the library. When expanding the library with another discretisation method
most of the library has to be reprogrammed for the new method. Budge et
al. [1992] report that even user programs may have to be rewritten for an
improved library.

Our case study of the Sophus software architecture for PDEs does not
show these symptoms. The Sophus library is designed to mimic the abstract
structure of the mathematics of partial differential equations, as used in the
description of many natural and industrial phenomena. Its apparatus sup-
ports coordinate free numerics in the formulation and development of solvers
to the problems. By requiring strict adherence to specified interfaces, we have
been able to achieve that different implementations of the same mathemat-
ical concepts are basically interchangeable. The Sophus library components
can be organised in different layers of abstractions. The interchangeability of
modules within a layer allows software developers to experiment with diffe-
rent solution strategies and high performance computer architectures without
the need for extensive reprogramming. For example, the change from a se-
quential to a parallel version of a seismic simulator does not involve any
reprogramming of the rest of the solver application, just a small change in
the configuration. Currently the Sophus library and application software is
implemented using C++.

7. Summary

We have proposed a methodology that focuses on developing domain specific
languages (DSL) as an important basis for software library development. The
software library is seen as providing a domain specific embedded language
(DSEL) [Hudak 1996]. The DSL will aid when formulating problem descrip-
tions, while the DSEL is useful for the design and implementation of applica-
tion programs. In our opinion development of a DSL and its implementation
as a software library has a software life cycle model, see Section 1, which is
distinct from that of application software development [Boehm 1976].
Software itself is a formal entity, with strict rules for syntax and a precise
interpretation (ultimately this is the semantics given by the formal system
that a computer represents, but hopefully it is given as a formal semantics
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that can be investigated by mathematical tools). This leads to a discipline
of formal software engineering, i.e., engineering of the formal side of soft-
ware. Formal software engineering does not imply the use of formal methods
throughout. We see formal methods as especially useful when developing a
DSL and when investigating the structure for the software library that will
provide the resulting DSEL. We strongly believe that algebraic methods are
appropriate for this, and have used them extensively in our case study.

The major part of this paper is a case study from the field of computational
modelling, specifically that of partial differential equations (PDE), an area
which is of significance for the industrial sector. In [Haveraaen et al. 1992]
we have used algebraic specification techniques to identify types and opera-
tions from the problem domain. This gave us a coordinate free language for
PDEs. This DSL is distinct from the one commonly used for implementing
PDE software, but it is a more abstract language with much better software
structuring properties. The fruitfulness of the DSL was checked with the de-
velopment of a collection of application programs. The DSL was also studied
with the purpose of structuring the concepts in order to find an optimal ar-
chitecture for the supporting software library. The library architecture was
designed to eliminate a large part of the implementation work by focusing
on reusable template classes.

In summary the concepts of universal algebra allowed us to identify the
basic entities — the types and functions — of the problem domain, giving them
a syntax and a meaning, yielding a domain specific language. This language
was used to formulate problems, and to check its usability for writing software
— programming in the small. Then we used categories and functor concepts
to pinpoint how the language elements should be organised into a collection
of modules. By carefully structuring the modules our coding effort can be
reduced, and reusable software components be defined. This is work at the
software architecture level — programming in the large.

Later, after the initial development of the DSL library and the application
programs, additional applications were specified, and the impact of the new
requirements on the library were studied. The case study showed that the
library architecture remained stable throughout these changing requirements.
It was possible to incrementally add interchangeable versions of new imple-
mentations as the need arose, and then use these with the other constructors
to build the needed software. This seems to yield a radical improvement
in software development and maintenance productivity. After developing
a family of related problem solving software, we developed a family of 16
new application programs. The new family of solvers were so different from
the existing applications that they traditionally would have required a full
development process to be initiated (but some reuse of code should be ex-
pected even in this case). With our approach a total cost of 15% of the
development cost of a single application was achieved for the new family
of applications. Moreover, the library architecture makes it clear exactly
which components need to be reconsidered when requirements change. In
most cases a component would relate to a specific requirement, but in some
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cases a component was influenced by several independent requirements and
required reimplementation whenever one of them changed. Further study of
structuring techniques is needed to see if these influences can can be factored
out in a more satisfactory way.

Our software methodology relies on concepts packaged under the term
object-orientation, and thus the elastic wave simulator is object-oriented nu-
merics (OON) in the sense of Wong et al. [1993] and Arge et al. [1997].
However, we end up with a software structure which deviates much from
most packages claiming to be OON, such as those of Verner et al. [1993]
and Bruaset and Langtangen [1997]. The OON approaches represent a clear
improvement over the traditional numerical software strategy, but many of
the OON approaches still remain within that tradition when it comes to the
conceptual decomposition of the software architecture.

The development of software libraries for important industrial problems is
no simple task. One of the most important aspects is to find a mature library
structure [Racko 1995]. Maturity means the library structure is robust faced
with new demands and further development. We approached library develop-
ment using formal software engineering, specifically algebraic methods. The
software library produced this way has shown a high degree of maturity. This
manifests itself by the fact that the structure of the library, and a large part
of its code, is unaltered when the basic discretisation method is changed,
and that a radical change in the assumptions of the problem (moving from
elasticity to poro-elasticity) requires modifications in one of the components.
Moreover, only one component needs to be changed when the software is
moved onto a parallel machine architecture.

Formal software engineering is just a small part of the field of software
engineering, but a sharper focus on this small area seems to be more than
worthwhile in the benefits that may be gained in reduced software cost and
improved reusability.

It may be argued that our example is taken from an area, partial differential
equations, with a highly developed formal theory, and that this example
does not indicate any general applicability of formal software engineering
and algebraic methods. Our reply is that we promote algebraic technology
as a language discovery device, and that any domain that is to be analysed
for the purpose of developing software needs its language concepts to be
discovered and formalised. Secondly, we promote reasoning about software
as a formal entity. This again is a property of software as such, and is
independent of the problem domain the software is developed for. Thus
both of these arguments should motivate the investigation of the potential
of formal software engineering in other application areas.
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