
Electronic Notes in Theoretical Computer Science 86 No. 2 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume86.html 15 pages

Domain-Specific Optimisation with
User-Defined Rules in CodeBoost

Otto Skrove Bagge 1

Chr. Michelsen Research AS
PO Box 6031, N-5892 Bergen, Norway

Magne Haveraaen 2

Department of Informatics
University of Bergen

PO Box 7800, N-5020 Bergen, Norway

Abstract

The use of domain-specific optimisations can significantly enhance the performance
of high-level programs. However, current programming languages have poor sup-
port for specifying such optimisations. In this paper, we introduce user-defined
rules in CodeBoost. CodeBoost is a tool for source-to-source transformation of
C++ programs. With CodeBoost, domain-specific optimisations can be specified
as rewrite rules in C++-like syntax, within the C++ program, together with the
classes where they apply. We also illustrate the effectiveness of user-defined rules
and domain-specific optimisation on a real-world example application.

1 Introduction

High-level, abstract programs communicate clearly the intent of the pro-
grammer. Much of this information is lost upon translation to a lower-level
representation—either by the programmer or by the compiler. Traditional
optimisation techniques focus much attention on various forms of analysis to
rediscover this lost information. Domain-specific optimisations take advantage
of domain knowledge for optimisation purposes. This allows the optimiser to
optimise high-level code directly, with little need for analysis. This greatly
simplifies implementation, and also makes it possible to implement otherwise
infeasible special-purpose optimisations. However, it also places additional

1 Email: otto@codeboost.org
2 Email: magne@ii.uib.no

c©2003 Published by Elsevier Science B. V.

Bagge and Haveraaen

demands on the programmer, who must formalise the knowledge of the ab-
stractions used, and make this information available to the optimiser.

This paper describes user-defined rules in CodeBoost, which provide one
way of formalising domain knowledge for use in optimisations.

CodeBoost [1,2,9] is a source-to-source transformation tool for C++ [13,20].
It has been developed as part of the SAGA project, to serve as a domain-
specific optimiser for Sophus [12,16]. Sophus is a C++ library providing high-
level abstractions for implementing partial differential equation solvers.

CodeBoost provides a framework for implementing domain-specific optimi-
sations and other transformations. It contains a parser, a semantic analyser, a
transformation library, and a pretty-printer. CodeBoost is implemented in the
Stratego program transformation language [22,23], and new transformations
may be implemented either in Stratego, or as user-defined rules embedded in
a C++ program.

User-defined rules allow C++ programmers to specify domain-specific op-
timisations and other transformations within the C++ program. Rules are
specified in C++-like syntax, eliminating the need to learn a separate trans-
formation language. Because CodeBoost performs semantic analysis also on
user-defined rules, it is trivial to perform semantic as well as syntactic match-
ing.

The purpose of this paper is to give an overview of the capabilities and use
of user-defined rules in CodeBoost. We will first introduce the basic ideas and
concepts of user-defined rules. We then discuss some slightly more advanced
concepts: list matching, conditions and generic rules. Then, we illustrate the
practical use of CodeBoost on a real-world Sophus application, with a few
simple, yet effective rules. Finally, we outline our future plans, discuss related
work and offer some concluding remarks.

2 User-defined rules

User-defined rules in CodeBoost allow C++ programmers to specify rewriting
of expressions. They are primarily intended as an aid in writing domain-
specific optimisations, but they are useful also for other kinds of transfor-
mations which require systematic rewriting of expressions. Examples include
replacing all uses of unsafe indexing operators in a library with boundary
checking versions, or instrumenting code with extra checks to verify the valid-
ity of optimisation rules.

Furthermore, user-defined rules can be used to express function relation-
ships and properties that may otherwise only be explicitly available in formal
program specifications or design documents. Having this kind of information
available as rules may be useful for both documentation, optimisation and
testing purposes.

Since rules are specified in C++-like syntax, there is no need to learn a
whole new programming language, nor is knowledge of compiler design or

2

Bagge and Haveraaen

the inner workings of an optimiser required to write user-defined optimisation
rules. To improve maintainability, the rules can be placed within the C++
program, close to relevant functions and classes.

2.1 Semantic matching

In CodeBoost, all program transformations are performed on an abstract syn-
tax tree (AST) representation of the program. To support advanced opti-
misations, the AST is annotated with semantic information. For instance,
all variables are annotated with types, and all function calls are annotated
with the unique function signature corresponding to the called function. This
makes it easy to distinguish between overloaded functions. 3

The ability to do matching on syntactic as well as semantic information
is important when implementing domain-specific optimisations for a language
which allows overloading. For instance, suppose that part of the domain
knowledge for a numerical library is that

pow(x, 2) ≡ x ∗ x.(1)

There may be other unrelated pow functions for which this is not true. Any op-
timisation rule taking advantage of (1) must not interfere with such unrelated
functions.

Convenient matching on semantic information is not as simple as it may
seem. Explicitly specifying function signatures and variable types in rules can
be tedious and error-prone, particularly since the rules must often be kept
consistent with application or library code. Secondly, since CodeBoost does
not support the use of concrete C++ syntax in Stratego rules, rules must be
written in the rather verbose abstract syntax. Matching a single call to a
particular function may require an abstract syntax pattern several lines long,
making reading and writing such rules a daunting task.

In CodeBoost, we have solved these problems by allowing rules to be spec-
ified within C++ programs, with patterns written in C++ syntax. When the
program is run through CodeBoost, the patterns are converted to AST form
and subjected to normal semantic analysis, together with the rest of the pro-
gram. Hence, they are automatically annotated with the correct signatures.
After semantic analysis, the rules are extracted and made available for use as
rewrite rules in CodeBoost modules.

2.2 Rule syntax

All user-defined rules are placed inside one or more C++ functions named
rules(). CodeBoost will recognise the function signature and interpret the
body as a list of rules. The rules() definitions can occur anywhere a normal

3 C++ allows overloading of both functions and operators. The distinction between func-
tions and operators is often of little importance to CodeBoost, and we will usually refer to
both as simply ‘functions’.

3

Bagge and Haveraaen

function can, and contain any number of rules. All names used in the rules
should be in scope and accessible. To simplify maintenance, rules are best
placed close to the functions to which they apply (i.e. inside the same class).

A user-defined rule consists of a rule name , a match pattern, a replacement
pattern and an optional condition. Fig. 1 shows the syntax for user-defined
rules. A typical rule looks like this:

void rules()

{

int x;

simplify: pow(x, 2) = x * x, isTrivial(x);

}

where ‘simplify’ is the rule name, ‘pow(x, 2)’ is the match pattern, ‘x * x’
is the replacement pattern, and ‘isTrivial(x)’ is a condition. During seman-
tic analysis the pow and * calls will be annotated with signatures, ensuring
that the correct versions are used for both matching and replacement. The
hypothetical condition isTrivial would check that x is a trivial expression,
so that the rule does not cause work duplication.

The rule name implicitly controls the application strategy. For instance,
the simplify transformation module will apply simplify rules according to
a predefined topdown-repeat strategy. This is explained in more detail in
Section 2.3.

When a rule is applied to an expression, the AST structure of the match
pattern is compared to the AST structure of the expression. If the pattern
matches, the condition is checked; if it is true, rule application succeeds and
the matched expression is replaced with the replacement pattern.

Locally declared variables (such as the x above) are treated as meta-
variables. A meta-variable in the match pattern matches all expressions, and
is bound to the first expression it matches. Subsequent occurrences of a bound
meta-variable in the match or replacement pattern are replaced by its value.
For example, the match pattern f(x, x), where x is a meta-variable, will
match a call to f where both arguments are identical.

rules ::= void rules() { (vardecl | rule)* }

rule ::= rule-name: expr = expr [, condition];

Fig. 1. Syntax for user-defined rules

2.3 Rule sets and application strategies

All rules with the same name make up a rule set. When a rule set is applied,
all rules in the set are tried until one of them succeeds. If no rule succeeds, the
rule set application fails. A rule set is said to terminate if it can be applied

4

Bagge and Haveraaen

repeatedly without getting stuck in an endless loop (i.e. it is guaranteed to
fail sooner or later).

Rule set application is ultimately controlled by transformation modules
written in Stratego. CodeBoost makes rule sets available to Stratego programs
as ordinary Stratego rules. User-defined rules are typically used with one of
two transformation modules, simplify and apply-user-rules, whose only
purpose is to apply rule sets. With these two modules, users can write and
apply their own rewrite rules without any knowledge of Stratego.

The rule sets applied by the transformation modules all have predefined
names. However, the user is free to apply other rule sets in rule conditions
(see Section 3.2).

The simplify rule set is used for simplification rules. It is assumed that
the right-hand side of simplify rules is somehow “better” or preferable to
the left-hand side, and that the rule set will terminate 4 . The transforma-
tion module simplify will apply the simplify rule set repeatedly (until it
terminates) using top-down traversal.

The module apply-user-rules applies four rule sets. It uses a down-up
traversal, applying topdown rules on the way down, and bottomup on the
way up. For repeated application (as in simplify) there is topdown r and
bottomup r.

In addition to these general purpose rule sets, some rule sets are used
for specific purposes. For instance, some transformation modules use the
assoc and commute rule sets to implement matching modulo associativity or
commutativity.

3 Advanced Concepts

3.1 List Matching

When working with functions that accept a variable number of arguments, it
is useful to be able to match all or part of the argument list with a single meta-
variable. List matching makes this possible; the match pattern list (x) will
match zero or more arguments in an argument list. When substituting meta-
variables in the replacement pattern, the value of list (x) will be integrated
into the argument list it appears in. For example, consider the rule

int f(int, int, ...);

int g(...);

void rules()

{ int a, b, c;

topdown: f(a, b, _list_(c)) = g(a, _list_(c), b);

}

4 So, if the user specifies a rule that does not terminate, rule application may not terminate.

5

Bagge and Haveraaen

If this rule is applied to f(1, 2, 3, 4, 5), it will match with list (c) 7→
3, 4, 5, and the result of the rewriting will be g(1, 3, 4, 5, 2).

During overload resolution, list (x) will appear as a single argument
with the same type as x. Note, however, that matching is untyped, so
list (x) can match arguments of any type—the type information is only
used for overload resolution. This is consistent with the semantics of C++.

It is possible to use list matching to match the beginning or middle of
argument lists:

topdown: f(_list_(a), g(b), _list_(c))

= fg(b, _list_(a), _list_(c));

If this rule is applied to f(1, 2, 3, g(4), 5), it will match, with list (a) 7→
1, 2, 3; b 7→ 4; list (c) 7→ 5; and the result will be fg(4, 1, 2, 3, 5).

CodeBoost only looks ahead one element while deciding when to stop, and
no backtracking is done. If the list match pattern is followed by something
that matches anything (such as an unbound meta-variable), the list match
will never match anything.

3.2 Rules with Conditions

Conditions are useful for specifying that a rule should only be applied in
certain cases. Because conditions can have (local) side-effects, such as binding
new meta-variables, they can also be useful for specifying more advanced
rewriting. Conditions follow the rule body after a comma, and are written in
function call notation. The comma should be read as ‘where’. For example:

X x, y;

simplify: (x + y) = x, isZero(y);

In this rule, isZero is a hypothetical built-in condition, which uses dataflow
information to determine whether y has a zero value. The rule will only be
applied if the condition evaluates successfully.

Built-in conditions are available for doing advanced checking and rewriting.
So far, the development of the condition language (and user-defined rules in
general) has been driven by the needs of particular Sophus optimisations rules.
Therefore, only a few special built-ins have been added so far. Conditions can
be combined using several primitives, including && (and), || (or) and not.

As an example, the following rule is a better version of the pow-simplification
rule from Section 2.2:

int x, t;

simplify: pow(x, 2) = t * t, t = tmp(x);

The rule uses the tmp built-in to make a temporary variable to hold the
value of x, so that x is not evaluated twice. A declaration for the temporary
is inserted before the containing statement, and tmp yields the name of the
temporary, for use in the replacement.

6

Bagge and Haveraaen

In addition to the built-ins, all user-defined rules can be used as conditions.
The following rule will switch the arguments of the plus operator so that
multiplications are on the left side. If there already is a multiplication on the
left side, nothing will be done.

topdown: z + (x * y) = (x * y) + z,

not(isMultExpr(z));

isMultExpr: (x * y) = true;

3.3 Generic Rules

So far, we have only written rules that work on specific functions and opera-
tors. Many rules have a basic structure that is independent of the particular
functions to which they apply. For example, the structure of a commutativity
rule is the same no matter which operators or types are involved (i.e., switch
the two arguments of a binary function or operator). Writing the same rule
over and over again quickly becomes tedious. It is better to write a generic
rule, and then specify which operators are commutative—particularly since
other rules may also depend on the commutativity property.

A generic rule can be used to specify rewrite rules independent of names,
types and signatures. For example, if f is declared locally as a function pointer,
the generic rule

topdown: f(x, y) = f(g(x), g(y));

will rewrite any call to any binary function or operator. The f will be bound
to both the name and signature of the matched function, and can be used to
construct new calls to the same function in the right-hand side of the rule.

As another example, the following fragment gives a generic commutativity
rule:

void rules()

{

T (*f)(T, T); // declare f as function pointer

T x, y;

commute: f(x, y) = f(y, x),

commutative(!f(x, y));

}

The ! primitive is used to build a literal expression term for use in rule
application. The following rules specify that the operators * and + on integers
are commutative:

void rules()

{

int a, b;

7

Bagge and Haveraaen

commutative: (a + b) = true;

commutative: (a * b) = true;

}

Obviously, for simple cases like the above example, generic rules are not
a huge benefit. However, they are beneficial for more complicated and non-
obvious rules. Furthermore, generic rules provide the benefit of abstraction;
the rule and its requirements are separated from, and independent of, the
concrete functions that fulfil its requirements.

4 Application: Sophus

4.1 Sophus background

We will use the Sophus software library [10,12] as our test bed for transfor-
mations. Sophus is developed for the numerical solution of partial differential
equations. Such programs are often termed solvers. Solvers are often used
to check whether a model of the real world, e.g., a geophysical model of a
1km3 section of the earth, matches the real world which it is supposed to
model. A check is performed by letting the solver simulate some measurement
on the model, e.g., how seismic waves propagate, and compare the simulated
results with real world measurements. If the comparison shows a problem
with the model, the model is adjusted and the solver is run once more on the
new model. Comparing results and adjusting the model is a creative process
which requires human ingenuity and may easily take specialists a full working
day. A simulation cycle is such a sequence of activities (run solver, investigate
results, adjust parameters for the next run of the solver). In this field runtime
efficiency is important. A solver may easily take several hours or days to reach
a solution. Bringing the solution time down from say, 25 hours to 15 hours
makes it possible to complete a simulation cycle every day rather than every
2–3 days.

Unlike most numerical libraries, Sophus is based on coordinate-free notions,
which are very high-level abstractions. This makes Sophus well suited for
source-level optimisations. We will focus on the SeisMod application, which
simulates seismic waves (elastic waves) in geophysical models of sections of
the Earth.

A key component of SeisMod is the Mesh abstraction, akin to the notion
of an array. Meshes are used to store data about the waves and the physical
properties of the material where they propagate. If we are doing a coarse
simulation on a 1km3 section of the Earth, we only need to store data with
5m resolution, which requires 2003 = 8 000 000 units of information. The
information needed for a simulation may easily amount to 20 Mesh variables,
each with 8 000 000 floating point numbers.

It is not always necessary to simulate a full 3D section. In many cases a
2D cross section of the model will give sufficient information. In our example

8

Bagge and Haveraaen

this reduces storage (and computation requirements) for a 2D version by a
factor of 200, to less than one percent of that of the 3D version.

4.2 Mesh, MeshPoint and MeshShape abstractions

A consequence of working with both 2D and 3D models is that we sometimes
need to index meshes using three indices (3D case), other times we will need
only two indices (2D case) for the same Mesh variables. In Sophus this has
been solved by introducing an index type abstraction called a MeshPoint,
which represents a list of indices with a given shape. The MeshShape ab-
straction tells how many indices are used, and the extent of each of them. In
the example, the MeshShape would be 〈200, 200, 200〉 and 〈200, 200〉 in the
3D and 2D cases, respectively. So, a Mesh M is indexed by M [P], where the
MeshPoint P may be a list of 2 or 3 indices. Actually, there are also cases
where we need only one index, in others we need four or more.

For this paper, the mesh abstractions contain a few interesting operations:

float operator[](const Mesh &, const MeshPoint &) which is the Mesh
indexing function, returning a floating point value for every appropriate
MeshPoint.

int getlex(const MeshPoint &) which decodes a MeshPoint index to the
unique lexicographic ordering it has within its shape.

MeshShape getshape(const MeshPoint &) which extracts the shape of a
MeshPoint.

int getsize(const MeshShape &) which computes the number of distinct
MeshPoints with the given shape.

MeshPoint setlex(const MeshShape &, const int &) which encodes an
integer as the unique MeshPoint with that lexicographic ordering within
the given MeshShape.

Obviously the operations getlex and setlex are inverses, in the sense that
getlex(setlex(S,i))==i and that setlex(getshape(P),getlex(P))==P for
MeshShape S, integer i and MeshPoint P. These properties of the MeshPoint
abstraction may easily be encoded as user-defined simplification rules within
the MeshPoint class:

void rules()

{ int i;

MeshShape S;

MeshPoint P;

simplify: getlex(setlex(S,i)) = i;

simplify: setlex(getshape(P),getlex(P)) = P;

}

A typical implementation of a Mesh class will represent the data of a Mesh

9

Bagge and Haveraaen

with MeshShape S as an array float A[getsize(S)];. Placing the data in
the Mesh in a lexicographic ordering, we can implement the indexing operation
using the getlex function.

float operator[](const Mesh & M, const MeshPoint & P)

{ return M.A[getlex(P)];

}

A call M[P] computes the lexicographic position of the argument P, and then
uses this integer to access the data in the array A.

4.3 Example: using user-defined rules for simplification

When using high level abstractions, it is often the case that the functions
have to decode its data structure, do some computation, and encode the result
within the data structure of the abstraction. Sometimes a succession of calls
to such functions will result in encode-decode sequences which eliminate each
other (at run-time). Often this code cannot be removed from the program text
without breaking the abstraction barriers. One example is the MeshPoint ab-
straction, with a computation MeshPoint P=setlex(S,i); float r=M[P];

for a Mesh M of MeshShape S. As a computation this first encodes the integer
i as a MeshPoint, then decodes the MeshPoint back to the integer value of i
in order to access the data of the Mesh. But we cannot eliminate this extra
computation without revealing the data structure and algorithms we are us-
ing for implementing the Mesh. Further, bypassing the MeshPoint abstraction
will force problems in other parts of the code, such as the partial derivative
functions (not further discussed here), where the list nature of the MeshPoint
index is important.

In the SeisMod solver much of the computation is centred around traversing
the Mesh data and performing operations on the elements of several meshes
for every MeshPoint index. Since the MeshShape S for the MeshPoints is
not known until runtime, traversal of the Mesh M1 . . . Mn data structures are
typically done using a simple loop and the setlex function.

for (int i=0; i<getsize(S); i++)

{ P = setlex(S,i);

... M1[P] ... Mn[P] ...;

}

For every iteration of the loop, we encode i to a MeshPoint, then every indexing
operation decodes the MeshPoint back to the same integer.

A code transformation tool like CodeBoost is allowed to bypass the ab-
straction borders of the code, e.g., by inlining, and may thus exploit prop-
erties of the underlying implementation. In our case the user-defined rule
getlex(setlex(S,i)) = i allows CodeBoost to get rid of the unneeded com-
putations. The effect of this optimisation on the SeisMod code is startling.
Table 1 summarises timings for the isotropic version of SeisMod, baseline ver-

10

Bagge and Haveraaen

sion 1.21, with the accompanying small and large regression testing data sets.

Not optimised Basic Simplified Speedup

Small 827s 630s 111s 5.7

Large 25435s 19028s 3996s 4.8

Table 1
Timings for SeisMod for small and large data sets. Not optimised is results
without any CodeBoost optimisation. Basic includes some Sophus-specific

optimisations. Simplified adds inlining of indexing and getlex/setlex
simplification. Speedup is speedup factor of Simplified relative to Basic.

5 Future Work

Although user-defined rules have already been used with great success in op-
timising Sophus applications, they are still an experimental feature under ac-
tive development. Currently, our work is focused on the interaction between
abstraction and optimisation, and the ordering of transformations. Many
domain-specific optimisations are applicable only at a particular abstraction
level. Inlining can be used to lower abstraction levels, but it must be done at
precisely the right time, or optimisation opportunities may be lost.

Transformation rules can be classified into three different kinds: Simpli-
fying rules, which perform actual optimisation, Implementing rules, which
perform inlining, and rules such as commutativity, which do not change the
abstraction level, and do not result in better code, but may enable other op-
timisations. A simple strategy exploiting this classification is: 1) Apply as
many simplifications as possible; 2) Try other rules, to see if they enable fur-
ther simplification; 3) Apply one level of inlining, go back to 1 if this succeeds.
But even with strategies such this, there is still the question of choosing which
individual rule to apply.

Sometimes, more than one rule matches a given expression. In this case,
CodeBoost will currently pick the first rule. It would probably be better to
pick the most specific rule (i.e. the one with fewest meta-variables), or the one
that gives the “best” results. Ordering rules by specificity is easy, but deciding
which rule is “best” will probably require input from the user. Furthermore, a
rule that may seem “worse” could still enable other transformations resulting
in overall better results. We have not studied this in detail yet; it may be
feasible to try several possibilities in parallel and then pick the best result.

6 Related Work

The concept of conditional rewrite rules is pretty standard in transforma-
tion languages such as Stratego [22,23], ASF+SDF [8], ELAN [3], TXL [7],

11

Bagge and Haveraaen

TAMPR [4,5] and others. Unlike these systems, our user-defined rules facility
is not intended as a general-purpose transformation language; we restrict our-
selves to transforming C++, within the CodeBoost framework. Apart from
this, the main difference compared to general-purpose systems is the embed-
ding of rules within the program being transformed. This allows users to
place domain-specific optimisation rules inside the modules to which they ap-
ply, and also allows the use of normal semantic analysis to generate semantic
constraints.

Embedding optimisation rules in program text is not a new idea. We were
first inspired by the rewrite rules in the Glasgow Haskell Compiler [14]. Our
implementation is more advanced, however, as it supports both side conditions
and multiple strategies.

User-definable strategies is available in Stratego and ELAN, and gives the
programmer precise control over the application of rules. We offer only a
selection of predefined strategies; however, when user-defined rules are used
from Stratego, they can of course be applied using arbitrary strategies.

User-defined rules bear some resemblance to macro processing, as in Lisp [19]
and the rather primitive C/C++ preprocessor [15,20]. However, macros are
commonly used for syntactic rewriting, without taking into account context
or semantics (this is actually a useful feature in some cases). The ability to
match on semantic information is an important part of user-defined rules in
CodeBoost.

CodeBoost, and user-defined rules, is most appropriately compared with
similar frameworks for C++ and other languages. Simplicissimus [18] is a
transformation system for C++ that allows user-specified conditional rewrit-
ing of expressions. Pattern matching is done with expression templates [21],
and traits [17] are used to specify function properties, which can be used in
rule conditions. Simplicissimus allows some degree of strategic control over
the application of rules, through its arbiters (deciding which rules are ap-
plied), stages (deciding when they are applied), and directors (deciding how
the program is traversed).

Simplicissimus is implemented as a compiler plug-in (currently using GCC),
and uses the compiler’s template processing for matching. The functionality is
similar to that of user-defined rules. The main drawback with Simplicissimus
is that the syntax for specifying rules is verbose and complex; rules that are
written in one line using user-defined rules would need half a page of code
in Simplicissimus. Our generic rules are inspired by Simplicissimus, and the
ideas of arbiters, directors and stages will probably be useful in the further
development of CodeBoost.

OpenC++ [6] provides a meta-object protocol for C++. A meta-object
protocol is an object-oriented interface for specifying language extensions and
transformations. As such, OpenC++ has many of the same capabilities as
CodeBoost, and can be used to implement domain-specific optimisations, as
well as other transformations, in an object-oriented fashion. OpenC++ is

12

Bagge and Haveraaen

not restricted to working with expressions; it can also be used for language
extensions, and generating functions and classes.

The Broadway compiler [11] allows library designers to annotate their C++
libraries with semantic information that will be used in high-level optimisa-
tions. The compiler is focused on the numerical domain, where for instance
a high-level program may require the solution of a linear system of equa-
tions. There exist many variations of such equations solvers, and the more
that is known about the properties of the linear system, the more efficient the
solver algorithm. The Broadway compiler tries to automatically select optimal
solvers by using annotations from the solver library to track properties of the
data in the high-level program.

For numerical software the TAMPR program transformation system [4,5]
has been used with remarkable success. A typical use is the derivation of
efficient Fortran code from high-level functional specifications. Other uses
include deriving an efficient implementation of TAMPR itself (which is spec-
ified in pure functional Lisp), reverse engineering, and solving the Year 2000
problem.

7 Conclusion

User-defined rewrite rules provide a convenient way of specifying domain-
specific optimisations. Rules are written in C++-like syntax within the pro-
gram text, and allow conditional rewriting of expressions. Conditions can be
used both to control when and if a rule is applied, and to perform advanced
rewriting by calling other rules or calling built-ins written in Stratego. Ad-
ditionally, list matching is available to conveniently manipulate the argument
lists of functions accepting a variable number of arguments.

Specifying rules within the program text allows us to subject rule patterns
to semantic analysis together with the rest of the program. Automatically
adding semantic information to rule patterns enables simple and easy speci-
fication of domain-specific optimisations, without the need for hand-written
semantic constraints.

User-defined rules are only a small part of the CodeBoost framework, and
more complex, generic optimisations are best implemented as separate trans-
formation modules written in Stratego. Still, as shown in this paper, we
have promising results from using user-defined rules for optimising Sophus,
and we expect that most new Sophus optimisations will be developed using
user-defined rules.

8 Acknowledgements

Many thanks to May-Lill Sande, Karl Trygve Kalleberg, Eelco Visser and the
anonymous referees for useful comments and inspiration. This investigation
has been carried out with the support of the Research Council of Norway

13

Bagge and Haveraaen

(NFR), and by a grant of computing resources from NFR’s Supercomputer
Committee.

References

[1] Otto Skrove Bagge. CodeBoost: A framework for transforming C++ programs.
Master’s thesis, University of Bergen, P.O.Box 7800, N-5020 Bergen, Norway,
March 2003.

[2] Otto Skrove Bagge, Karl Trygve Kalleberg, Magne Haveraaen, and Eelco
Visser. Design of the CodeBoost transformation system for domain-specific
optimisation of C++ programs. In Dave Binkley and Paolo Tonella, editors,
Third International Workshop on Source Code Analysis and Manipulation
(SCAM 2003), Amsterdam, The Netherlands, September 2003. IEEE Computer
Society Press. (To appear).

[3] Peter Borovanský, Claude Kirchner, Hélène Kirchner, Pierre-Etienne Moreau,
and Christophe Ringeissen. An overview of ELAN. In C. and H. Kirchner,
editors, Proceedings of the 2nd International Workshop on Rewriting Logic and
its Applications, Pont-A-Mousson, France, September 1998. Elsevier Science.

[4] James M. Boyle. Abstract programming and program transformation—An
approach to reusing programs. In Ted J. Biggerstaff and Alan J. Perlis, editors,
Software Reusability, volume 1, pages 361–413. ACM Press, 1989.

[5] James M. Boyle, T.J. Harmer, and V.L. Winter. The TAMPR program
transformation system: Simplifying the development of numerical software.
In Erlend Arge, Are Magnus Bruaset, and Hans Petter Langtangen, editors,
Modern Software Tools for Scientific Computing, pages 353–372. Birkhäuser,
Boston, 1997.

[6] Shigeru Chiba. A metaobject protocol for C++. In Proceedings of the
ACM Conference on Object-Oriented Programming Systems, Languages, and
Applications, pages 285–299. ACM, October 1995.

[7] James R. Cordy, Charles D. Halpern, and Eric Promislow. TXL: A rapid
prototyping system for programming language dialects. In Proceedings of the
IEEE 1988 International Conference on Computer Languages, pages 280–285,
October 1988.

[8] Arie van Deursen, Jan Heering, and Paul Klint, editors. Language Prototyping:
An Algebraic Specification Approach, volume 5 of AMAST Series in Computing.
World Scientific Publishing Co., 1996.

[9] T.B. Dinesh, Magne Haveraaen, and Jan Heering. An algebraic programming
style for numerical software and its optimization. Scientific Programming,
8(4):247–259, 2000.

[10] Helmer André Friis, Tor Arne Johansen, Magne Haveraaen, Hans Munthe-
Kaas, and Åsmund Drottning. Use of coordinate free numerics in elastic wave
simulation. Applied Numerical Mathematics, 39(2):151–171, 2001.

14

Bagge and Haveraaen

[11] Samuel Z. Guyer and Calvin Lin. An annotation language for optimizing
software libraries. In Proceedings of DSL’99: The Second Conference
on Domain-Specific Languages, Austin, Texas, USA, 1999. The USENIX
Association.

[12] Magne Haveraaen, Helmer André Friis, and Tor Arne Johansen. Formal
software engineering for computational modelling. Nordic Journal of
Computing, 6(3):241–270, 1999.

[13] ISO/IEC JTC1 SC 22. ISO/IEC 14882: Programming languages — C++, 1998.

[14] Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. Playing by the rules:
Rewriting as a practical optimisation technique in GHC. In Ralf Hinze, editor,
2001 Haskell Workshop, Firenze, Italy, September 2001.

[15] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.
Prentice Hall, second edition, 1988.

[16] Hans Munthe-Kaas and Magne Haveraaen. Coordinate free numerics — closing
the gap between ‘pure’ and ‘applied’ mathematics? Zeitschrift für Angewandte
Mathematik und Mechanik, 76, supplement 1:487–488, 1996.

[17] Nathan C Myers. Traits: a new and usefule template technique. C++ Report,
June 1995.

[18] Sibylle Schupp, Douglas P. Gregor, David R. Musser, and Shin-Ming Liu.
Semantic and behavioral library transformations. Information and Software
Technology, 44(13):797–810, October 2002.

[19] Guy L. Steele, Jr. Common LISP: The Language. Digital Press, second edition,
1990.

[20] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley,
Reading, Massachusetts, USA, third edition, 1997.

[21] Todd L. Veldhuizen. Expression templates. C++ Report, 7(5):26–31, June
1995. Reprinted in C++ Gems, ed. Stanley Lippman.

[22] Eelco Visser. Stratego: A language for program transformation based on
rewriting strategies. System description of Stratego 0.5. In A. Middeldorp,
editor, Rewriting Techniques and Applications (RTA’01), volume 2051 of
Lecture Notes in Computer Science, pages 357–361. Springer-Verlag, May 2001.

[23] Eelco Visser, Zine-el-Abidine Benaissa, and Andrew Tolmach. Building
program optimizers with rewriting strategies. In Proceedings of the third ACM
SIGPLAN International Conference on Functional Programming (ICFP’98),
pages 13–26. ACM Press, September 1998.

15

	Introduction
	User-defined rules
	Semantic matching
	Rule syntax
	Rule sets and application strategies

	Advanced Concepts
	List Matching
	Rules with Conditions
	Generic Rules

	Application: Sophus
	Sophus background
	Mesh, MeshPoint and MeshShape abstractions
	Example: using user-defined rules for simplification

	Future Work
	Related Work
	Conclusion
	Acknowledgements
	References

