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Abstract

The use of a high-level, abstract coding style can greatly
increase developer productivity. For numerical software,
this can result in drastically reduced run-time perfor-
mance. High-level, domain-specific optimisations can elim-
inate much of the overhead caused by an abstract coding
style, but current compilers have poor support for domain-
specific optimisation.

In this paper we present CodeBoost, a source-to-source
transformation tool for domain-specific optimisation of
C++ programs. CodeBoost performs parsing, semantic
analysis and pretty-printing, and transformations can be
implemented either in the Stratego program transformation
language, or as user-defined rewrite rules embedded within
the C++ program. CodeBoost has been used with great
success to optimise numerical applications written in the
Sophus high-level coding style.

We discuss the overall design of the CodeBoost transfor-
mation framework, and take a closer look at two important
features of CodeBoost: user-defined rules and totem anno-
tations. We also show briefly how CodeBoost is used to op-
timise Sophus code, resulting in applications that run twice
as fast, or more.

∗This paper appears in Dave Binkley and Paolo Tonella, editors,
Third International Workshop on Source Code Analysis and Manipula-
tion (SCAM 2003), pages 65–75, Amsterdam, The Netherlands, September
2003. IEEE Computer Society Press.

1. Introduction

There is a tension between developing efficient pro-
grams, and efficient development of programs. In the prob-
lem domain of high-performance numerical computation,
run-time speed is essential. This has led to a low-level,
efficiency-oriented programming style, resulting in pro-
grams that are difficult to develop and very hard to maintain.
Moving to a more abstract coding style will improve main-
tainability, but will also have a severe impact on run-time
efficiency. Abstract constructs themselves typically gener-
ate run-time overhead, but the loss in efficiency is much
larger: In our experience (see Section 3), current optimising
compiler technology falls short when it sees high-level ab-
stractions. Thus we do not only suffer an overhead by being
more abstract, we also lose the optimisations we otherwise
would benefit from.

A solution to this problem is to transform the abstract
source code into a lower-level, more efficient code. Code-
Boost [2, 13, 18] has been developed as a source-to-source
transformation tool for C++ [16, 23], intended to bridge
the gap between the high-level coding style advocated by
modern software engineering, and the lower-level style pre-
ferred by current compilers. It is developed as part of the
SAGA project, to support the Sophus style of program-
ming [15, 19]. Sophus is a C++ library providing high-level
abstractions for implementing partial differential equation
solvers.

CodeBoost consists of two components: The transforma-
tion framework and the optimiser. The framework has the
necessary infrastructure to support transformation of C++
programs, and allows the development of new transforma-
tions in the Stratego [26, 27] program transformation lan-
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guage or as simpler rules specified in a C++-like syntax [3].
The framework is targeted primarily at supporting the Code-
Boost optimiser, which is a high-level, domain-specific op-
timiser for Sophus.

The CodeBoost optimiser gives the user control over the
optimisation process. New optimisations can be added eas-
ily, and optimisations can be applied (and re-applied) in any
order. Because the output is readable C++ code, it is easy
to see the effects of the transformations.

This paper gives an overview of the design of the Code-
Boost framework and the CodeBoost optimiser. The rest
of the paper is organised as follows. First, we introduce
our underlying design philosophy. Then, we introduce So-
phus, and take a brief look at some of the Sophus-specific
optimisations that have been implemented with CodeBoost.
In Section 4, we discuss the architecture of the Code-
Boost framework, followed by a description of user-defined
rewrite rules (Section 5) and totem annotations (Section 6).
In Section 7, we discuss our experience with transforming
C++. Finally, we discuss related work (Section 8) and offer
some concluding remarks (Section 9).

2. Design philosophy

CodeBoost is a set of modules written in Stratego to
perform improvements on C++ code written in the Sophus
style. The dependency on Stratego, Sophus and C++ has
naturally formed much of our work on CodeBoost. The de-
velopment of CodeBoost has been an evolutionary process,
adapting to the complexity of C++, the rapid evolution of
Stratego and the changing demands of Sophus. Our overall
design philosophy is as follows.

Implement only what is needed. C++ is a large language,
and writing a complete and fully compliant implementation
would take far more time than we had available. It is better
to implement only what is needed for the task at hand, and
then, later on, extend as required.

Make incremental changes. When changes are made in
small steps, it is easier to verify that they work as intended.
Also, it is motivating to work on a system which is “alive”
and working, instead of programming for long stretches of
time with no end in sight. We believe the motivation factor
is quite important.

Don’t be afraid to make changes. Designing and build-
ing a system often requires knowledge which is only avail-
able when one has already built such a system. During the
course of development, several flaws in the original Code-
Boost design have become apparent, and many parts of
CodeBoost have been rewritten several times. Some of the
changes have been quite intrusive, particularly changes in
the internal representation, but still, we have usually been
able to complete them in few days.

Modular design. We have three reasons for choosing a

modular design. First, by separating code that performs sep-
arate tasks into separate modules that communicate through
a well-defined interface, we can change or even reimple-
ment one module without affecting the others. For instance,
the overloading resolver can be changed without affecting
other parts of semantic analysis. Secondly, the order in
which optimisations are applied can often be important. Im-
plementing each transformation as a separate module allows
us to experiment easily with different orderings. Our third
reason is motivated by purely practical concerns: The early
versions of the Stratego compiler were quite slow, and used
huge amounts of memory when compiling even moderately
sized modules. With small modules, we did not have to re-
compile all of CodeBoost when making small changes.

Testing. Good automated unit and regression tests ensure
that a system works as expected, and that undesired side-
effects of changes are easily discovered. It has been our
goal to provide automated tests for all CodeBoost modules.
The currently implemented tests are not as extensive and
complete as we would like them to be, but they have helped
uncover countless mistakes and bugs.

3. Optimising Sophus

Sophus [15, 19] is a C++ library providing high-level
abstractions for implementing partial differential equation
(PDE) solvers. This is a field in which runtime perfor-
mance is of great importance. Unfortunately, although a
high-level programming style is beneficial in terms of pro-
grammer productivity and program maintainability, it has
a large negative impact on performance. Current compil-
ers have proven unable to sufficiently optimise programs in
this style, partly due to low demand for such optimisations,
and partly because some of the most effective optimisations
go beyond the C++ standard. Building a domain-specific
optimiser for Sophus allows us to experiment with optimi-
sations, and bridge the gap between the Sophus coding style
and current compiler technology. CodeBoost was originally
designed to fill this need, and optimisation of the Sophus
library remains our primary purpose for developing Code-
Boost.

A few of the Sophus design choices relevant for this pa-
per include

• An algebraic programming style with the use of side-
effect free expressions and explicit assignments. This
is closer to the notation of the mathematical domain.
It is also similar to the notation advocated by the func-
tional programming community.

• The use of user-defined array-like data structures with
numerical operators on them. This allows us to elimi-
nate the use of explicit loops in the code. So we would
write x = a + b; for arrays x, a and b, rather than
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stepping through the elements of the arrays in an ex-
plicit loop when adding them.

The combined use of these techniques gives problems. The
array size may be 0.7MB for small arrays, increasing to
6.4MB for larger examples. When these are manipulated
in large C++ expressions, the compiler has to create many
large temporary variables to hold intermediate results. Ini-
tialising temporaries is expensive, and so is copying return
values out of functions. Also, since loops are hidden within
separate functions, the compiler may not be able to perform
the standard loop optimisation and loop merging tricks it
normally does to improve performance.

Further, in conventional numerical programming certain
expressions are considered so important that there exist spe-
cial, highly optimised procedures for them. For example,
consider

x = mvmult(m,x) + y;

for array structures matrix m and vectors x and y, where
mvmult is matrix-vector multiplication (and + is vector ad-
dition as described above). Here the compiler would gener-
ate two temporary variables. This assignment statement can
be replaced by the optimised procedure call

axby(m,x,y);

which performs the calculation and mutates (changes the
value of) the variable x to contain the result. Mutating the
variable eliminates the need for compiler-generated tempo-
raries.

So, we see that we need the following activities to trans-
form the abstract program back to a low-level optimisable
program:

Mutification: Gain control over the generation of tem-
porary variables and copying of return values by re-
placing algebraic-style expressions by mutating proce-
dures. These rules correspond to built-in C conven-
tions like rewriting an assignment x = x + a; to a
mutifying procedure x += a;, but extended to user-
defined types.

User-defined rules: Allow very domain-specific optimisa-
tions to be defined by the user, e.g., replacing an as-
signment by axby as sketched above.

Totems: To insert and trace invariants and annotations
in the code. Such annotations, together with user-
defined rules, may allow CodeBoost to, e.g., eliminate
a matrix-vector multiplication if it was known that the
matrix was a unit matrix (diagonal matrix with only
ones on the diagonal).

That such transformations are useful can be seen in Table 1,
where the effect on run-time speed of applying mutification

to the isotropic version of the SeisMod seismic simulation
application is tabulated. The results were obtained on an
SGI Origin 3800, using version 7.3.1.3m of SGI’s MIPSpro
compiler with optimisation enabled. Even though the trans-
formation is quite simple, mutification still gives a signifi-
cant improvement over a state-of-the-art C++ compiler: The
mutified version is nearly twice as fast as the plain version,
and memory use is reduced to 60%.

Small time speedup mem relmem
plain 239.3s 1.0 111504 100%
mutify 121.5s 2.0 67248 60%
Large time speedup mem relmem
plain 7810s 1.0 305424 100%
mutify 4147s 1.8 183136 59%

Table 1. Results for mutification of SeisMod
for large and small data sets. Speedup rela-
tive to the plain version; mem is memory use
in kilobytes; relmem is memory usage rela-
tive to the plain version.

User-defined rules opens up further possibilities. Seis-
Mod makes extensive use of elementwise arithmetic oper-
ations on arrays. This has been implemented as a number
of overloaded operators, each containing basically the same
array-traversing loop. We refactored SeisMod, separating
out the common traversal code into a single, generic traver-
sal function, one for each array-like type. This gave us a
5% reduction in code size—with more savings expected as
new array-like classes are added—but it also made SeisMod
more than three times slower (compare the time for plain in
Table 1 with plain in Table 2). With the help of user-defined
rules, we were able to completely eliminate this new over-
head [3]; see results for index-opt in Table 2. Furthermore,
since traversals are now clearly identifiable as calls to a par-
ticular function, we are able to employ map fusion, which
combines several successive traversals into one, further im-
proving performance [2]. This achieves the same effect as
loop fusion, which the compiler seems unable to apply.

4. Architecture

The CodeBoost framework consists of a parser, a se-
mantic analyser, a library of transformations, and a pretty-
printer. Figure 1 illustrates the typical usage of the compo-
nents in the framework. The C++ code is first parsed, passed
on to semantic analysis, then on to user-defined transfor-
mations, which can be applied as many times as necessary,
before C++ code is produced by the pretty-printer. The se-
mantic analysis phase may be bypassed if the transforma-
tions do not require semantic information.
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C++
source

Frontend
· Preprocessor
· OpenC++
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AST

Annotated AST
(AST++)

AST++C++

Figure 1. The Transformation Process

Small time speedup
plain 827s 1.0
index-opt 111s 7.5
mapfusion 103s 8.1
Large time speedup
plain 25435s 1.0
index-opt 3996s 6.4
mapfusion 3866s 6.6

Table 2. Result for refactored SeisMod with
abstracted traversal. Plain is results with-
out CodeBoost optimisation. Index-opt in-
cludes optimisations to eliminate extra over-
head in the new-style code; mapfusion com-
bines multiple successive traversals into
one. Speedup is speedup factor relative to
plain.

4.1. Frontend

The frontend consists of a preprocessor, a parser, and a
postprocessor. The C++ preprocessor is often used for con-
ditional compilation, in which certain parts of a program are
omitted or changed based on options given to the compiler.
This is useful when writing programs that should compile
on different systems, and to derive different versions of an
application from the same program text. This is frequently
used in Sophus: Based on options, the preprocessor selects
between parallel and sequential code, selects the size of data
structures, and picks classes that most closely model the
problem domain.

We envisage two ways of using CodeBoost: To trans-
form a full compilation unit in one step, with conditional
compilation performed, all header files1 included, and all
macros processed; or to transform a single header file,
postponing conditional compilation, macro processing and
header file inclusion until compile time. The latter is partic-
ularly useful for Sophus, since the same optimised source
can be used to derive several different versions of an appli-
cation.

To support this, CodeBoost has its own preprocessor,
which gives the user control over which parts of the pro-
gram are transformed by CodeBoost. It is possible to de-
lay inclusion of header files, delay macro processing, and
read declarations from files which will not be included in
the transformed output. CodeBoost uses a standard C++

1Except the C and C++ Standard Library: Standard library implemen-
tations typically contain vendor-specific extensions that may not be fully
compatible with the C++ Standard. Besides, CodeBoost itself does not
support all valid C++ constructs, and will likely not be able to process the
standard library.
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preprocessor to remove comments from the input code, and
to process inclusions and macros, when desired.

After preprocessing, OpenC++ [9, 10] is used to parse
the program text. The result of parsing is a concrete syn-
tax tree in ATerm format,2 which is further processed by
the postprocessor into an abstract syntax tree (AST). The
AST is CodeBoost’s preferred internal program representa-
tion. In addition to representing the syntactic structure of
the program, the AST also contains semantic information
resulting from semantic analysis.

4.2. Semantic analysis

The purpose of semantic analysis is to connect symbols
to declarations, and annotate each symbol with semantic in-
formation. Variables are annotated with their type and the
scope in which they are declared. Functions (in function
calls) are annotated with the full name and signature of the
called function, and type names are qualified fully, so that
the type name unambiguously refers to a single type. An-
notating function calls can be a bit tricky, since C++ al-
lows overloading; multiple functions can be defined with
the same name, as long as their formal argument lists differ.
CodeBoost performs overload resolution, and also performs
template argument deduction, so it will handle calls to tem-
plate functions properly.

Since CodeBoost is supposed to be able to handle in-
complete programs (e.g., in optimising a single header file)
it will not stop when it encounters an undeclared sym-
bol. However, later transformation stages will often rely
on semantic information. For example, if the inliner is to
inline a particular function call, it needs to know which
function definition is associated with that call. Similarly,
user-defined rewrite rules (see Section 5) perform matching
based on function signatures. If the signatures are incom-
plete, rewriting will not happen. This is not a huge prob-
lem, since it only applies to expressions containing unre-
solved symbols—calls to the standard library, for instance.
However, when processing uninstantiated templates, which
is sometimes useful, type information for the template ar-
guments is unavailable. This can cause CodeBoost to miss
some optimisations due to lack of information.

4.3. Transformations

In CodeBoost, transformations are implemented as mod-
ules. Each module is a separate program, which reads,
transforms and writes an AST. The modules are connected

2ATerm (Annotated Term Format) is a format for exchanging structured
data between tools [7]. Stratego uses ATerms as its term representation.
ATerms are supported in the C, Java and Haskell languages through the
ATerm Library. However, the term format is easy to parse, so an ATerm
reader/writer can be written for other languages as well.

together with Unix pipes to form a transformation pipeline.
Examples of transformation modules include the mutifica-
tion optimisation from Section 3, and the inliner, which in-
lines particular function calls in support of other optimisa-
tions.

The CodeBoost framework contains a transformation li-
brary to ease the implementation of transformation mod-
ules. There are strategies for symbol table lookups, type
comparison, matching and conversion, various kinds of
traversal, and simple pretty-printing for error messages,
warnings and debug information. Additionally, Stratego has
a comprehensive library of generic, language-independent
strategies which are useful when implementing CodeBoost
modules.

The separation of traversals and transformations in Strat-
ego makes it possible to extract parts of a larger transforma-
tion and generalise them. Such transformations can then be
added to the general CodeBoost library and reused for other
purposes.

User-defined rewrite rules are specified within the C++
program text, and can be written without any knowledge
of Stratego. CodeBoost will pick up these rules, and make
them available to transformation modules written in Strat-
ego. Two modules included in CodeBoost, simplify
and apply-user-rules, allow for application of user-
defined rules. Such rules can be used to exploit fundamental
equalities in a program, by specifying program- or library-
specific optimisations.

4.4. Backend

After transformation is complete, the pretty-printer con-
verts the AST back into C++ program text. The output pro-
gram is properly indented, and should be fairly readable to
humans. Alternatively, the result of transformation can be
stored as an AST, and be loaded into CodeBoost later on.
This can be advantageous in a setting where a C++ header
file is used by several other C++ files; instead of analysing
and transforming the same header file several times, it can
be processed just once. Loaded ASTs will not be subjected
to parsing and semantic analysis, and later transformation
stages will typically not re-transform such previously pro-
cessed code (though the code may be used by e.g., the in-
liner).

5. User-defined rules

There are two ways to add new transformations to Code-
Boost: writing a new Stratego module, or specifying user-
defined rules. We will not go into detail on specifying
transformations in Stratego, as this is discussed at length
elsewhere [2, 8, 17, 20, 25]. Stratego is useful for imple-
menting complex, generic transformations, whereas user-
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defined rules are appropriate for simpler domain-specific
transformations. A typical application of user-defined rules
is domain-specific optimisations where certain combina-
tions of function calls can be simplified or replaced with
calls to special-case optimised functions.

Domain-specific optimisations often rely on rewriting
calls to specific functions. This is problematic when spec-
ifying rewrite rules. In a language such as C++, which
allows function overloading, it is not sufficient to simply
specify the name of a function; to uniquely identify a func-
tion, its full signature—including argument types—must be
specified. This is tedious and error-prone, particularly when
working with the abstract syntax in Stratego.

In CodeBoost, we have solved this by allowing rules to
be specified in C++ syntax, within the C++ program text.
Function calls in rule patterns are subjected to normal over-
load resolution; thus, the correct signature is automatically
deduced.

A user-defined rule consists of a name, a match pattern,
a replacement pattern and an optional condition. Rules are
contained within a function named rules(); such func-
tions can be placed anywhere in the program, and are re-
moved by CodeBoost after the rules have been extracted. A
typical rule looks like this:

int x;
simplify: x + 0 = x;

where ‘simplify’ is the name, ‘x + 0’ is the match pat-
tern and ‘x’ is the replacement pattern. Local variables are
treated as meta-variables, and will match anything. Addi-
tionally, list matching is available for use with functions that
accept a variable number of arguments.

In the above example, the + will resolve to the integer
addition operator, and the rule will match any integer addi-
tion of the form x + 0, and rewrite to x. For example, when
the rule is applied to (3 + 2) + 0, x will match (3 +
2), and the result will be (3 + 2).

Conditions are separated from the rest of the rule with
a comma. The condition must succeed for the rule to be
applied. For example, a more advanced version of the pre-
vious example would be

int x, y;
simplify: x + y = x, is_zero(y);

where is_zero would use some kind of data flow infor-
mation, such as totems (discussed in Section 6) to deter-
mine if y has a zero value. A number of built-in condition
checks are available; it is also possible to call other user-
defined rules from conditions. In keeping with our design
philosophy, we have only implemented the few built-in con-
ditions we have needed for optimisations; others can easily
be added with a few lines of Stratego code.

Rules with the same name are collected into rule sets.
Rule sets are callable from Stratego programs, and from rule
conditions. When a rule set is applied, each of its rules is
tried, until one is successfully applied. If no rule applies
successfully, the rule set fails.

It is sometimes useful to write rules which are applied
only to see if they succeed or fail. For example, the follow-
ing two rules sort addition expressions so that multiplication
sub-expressions are on the left side:

sort: z + (x * y) = (x * y) + z,
not(is_mult_expr(z));

is_mult_expr: (a * b) = true;

In the rule sort, is_mult_expr is used to check if
the left-hand side already contains a multiplication expres-
sions; if so, the rule fails. This is particularly useful in
generic rules, in which functions (and their signatures) are
matched with meta-variables, thus matching any function,
not just a particular function. For example, given a rule
set is_commutative that applies successfully to com-
mutative functions, we can write a generic rule that em-
ploys commutativity laws, and uses is_commutative in
a condition to check for commutativity.

User-defined rules in CodeBoost is discussed in more de-
tail in [3].

6. Totem annotations

For domain-specific optimisation to work, the optimiser
must have access to domain knowledge. This knowledge
can be in the form of executable transformations, written in
Stratego or as user-defined rules. Another option is to use
declared domain knowledge, where the programmer gives
hints to the optimiser by declaring properties of variables
and functions. We have implemented a mechanism in Code-
Boost for tagging language constructs with auxiliary infor-
mation, and propagating these tags throughout the program.
This can be used, for example, to specify that a matrix is a
diagonal matrix; combined with a simple user-defined rule,
this gives us a transformation that automatically selects ef-
ficient, specialised versions of matrix operations.

In our nomenclature, such a tag is called a totem, as the
tag is usually an emblem signifying membership in a special
class of entities (e.g., diagonal matrices).

CodeBoost recognises function calls to CB_TAG and
CB_IMPORT as special totem directives. A totem is typi-
cally either a switch or some kind of meta information used
by transformations.

Arbitrarily complex meta information stored in a config-
uration file separate from the source code can be loaded at
boosting time by the CB_IMPORT directive. Each external
configuration file may contain many named bundles of meta
information, each called a context.
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After the contexts are loaded, they may be tagged onto
entities by their name, using the CB_TAG directive. Sub-
sequent transformations are then free to inspect the various
entities for the presence of relevant meta information.

The content of the meta information is opaque to Code-
Boost; its semantics are known only by the transformations.
An example of useful meta information is layout informa-
tion for matrices, which can be used in partial evaluation of
matrix operations [18].

In some cases, it is reasonable for totems to propagate
throughout the program. In the code fragment

Matrix A, B;
CB_TAG(A, "simplification",

"unit-matrix");
B = A;

the matrix A is tagged with the unit-matrix totem in the sim-
plification context. We know from mathematics that ma-
trix B should inherit the unit-matrix property from A. For
this, we have implemented some rudimentary strategies for
generic totem propagation that;

• Propagate totems across the assignment operator.

• Drop totems on variables that are potentially modified
(i.e., the variables are assigned to, or passed as non-
const parameters to functions).

After totem propagation, we can apply simplifying trans-
formations that are aware of the properties available in
the simplification context (which additionally could contain
flags for diagonal, triangular, checkerboarded or other com-
mon matrix layouts). They may issue queries to the frame-
work for the unit matrix property on matrix variables, and
can thus simplify the code accordingly.

This simple propagation approach will only work for a
very limited set of totems. For the more involved totems,
separate totem-propagation strategies that accompany a par-
ticular transformation need to be written.

7. Discussion

7.1. Transforming C++

C++ is a large and complex programming language.
It supports many different programming paradigms and
styles, including low-level C-like programming, the alge-
braic style advocated by Sophus, object-orientation, and
generic programming. This flexibility gives a lot of freedom
to programmers, but makes the implementation of language
processing tools such as compilers and transformation sys-
tems extra challenging. The main problems with C++ are
(from an implementor’s perspective):

• The grammar is large, and not context-free. This
makes it difficult to implement a correct parser using
standard tools.

• C++ has a lot of features. This is a problem both be-
cause there are more features to implement, and be-
cause language features have a tendency to interact in
interesting ways.

• The programmer is free to mix high-level and low-
level coding styles. High-level optimisations will often
not work on low-level code, and low-level features—
such as pointer manipulation—can confuse or compli-
cate the analysis needed to support high-level optimi-
sations.

CodeBoost provides no satisfactory solution to the first
problem. The OpenC++ parser does not correctly resolve
the ambiguities in the C++ grammar, and will give incor-
rect results in certain cases. This has not been a huge prob-
lem so far, because the ambiguous constructs are seldom
used in Sophus. We briefly considered developing our own
parser based on the syntax definition formalism SDF [24],
but it would have taken too much time. Recent efforts, how-
ever, may provide us with a good (and correct) SDF-based
parser [1].

We have dealt with the second problem by limiting our-
selves to a manageable subset of C++. Language constructs
that are used by Sophus, but are irrelevant to optimisa-
tion, can be left untouched, and some features that are not
needed, can be ignored.

In developing high-level optimisations for Sophus, we
have solved the last problem by placing additional semantic
restrictions on the language. For instance, the C++ stan-
dard specifies no special semantic relationship between +
and +=, or between construction and assignment. Sophus,
on the other hand, defines such relationships, and this is part
of what allows CodeBoost to perform effective, high-level
optimisations.

7.2. Maintainability and optimisation

In the process of developing software, programmers
make tacit assumptions about the code. Such assumptions
include invariant properties, such as this should now be a di-
agonal matrix, or properties about the relationship between
functions/methods, such as these two functions are inverses
of each other. By recording these assumptions in the pro-
gram text, maintenance is eased, as the intent of the code
becomes clearer. Such annotations may also be used to ver-
ify that the properties assumed actually hold, e.g., testing
whether an assumed diagonal matrix actually is a diagonal
matrix. But the annotations may also be given a dual read-
ing, as information which a program transformation system
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may use for optimising code. We have primarily focused on
the latter aspect.

In our experience, the use of CodeBoost (and high-level
optimisation in general) encourages the writing of shorter
programs and more maintainable code. Without sufficient
automated optimisation, it is often necessary to hand-inline
and hand-tune code to get acceptable performance. This
in turn makes the code more difficult to understand and to
modify. With CodeBoost, we can write high-level, easy-to-
understand code, and still get good performance, by the use
of domain-specific, user-defined optimisations.

As for maintenance of the optimisations themselves,
user-defined rules and totems are typically kept close to
relevant parts of code, and require little extra maintenance
work. Since rules are often used to capture fundamental re-
lationships between functions, many rules will be correct in-
dependently of the concrete implementations of functions.
As noted above, such rules may serve a dual purpose as both
assertions of expected behaviour, and as optimisation rules.

7.3. Correctness of transformations

The programmer is responsible for keeping rules and
totems correct and up-to-date with respect to the rest of
the program. CodeBoost makes no attempt to verify their
correctness—after all, the point of such annotations is to
allow the programmer to communicate knowledge that the
optimiser is unable to deduce on its own. Rules will typi-
cally follow from the specification of a module or design of
an algorithm, and will need to undergo normal program val-
idation techniques—along with the rest of the program—to
ensure validity.

8. Related work

For numerical software the TAMPR program transfor-
mation system [5, 6] has been used with remarkable suc-
cess. Its main use has been the specialisation of numerical
library code from generic code, but it has also been used for
optimisation of code.

The algebraic specification formalism ASF+SDF [12]
has strong syntactic capabilities, and supports rewriting
with high-level transformation rules. It was used in a first
experimental version of CodeBoost [13]. One of the ob-
servations in this project was that pure rewriting on con-
structors of abstract trees was not sufficient for the context-
sensitive application of transformation rules required in pro-
gram optimisation. Spelling out the traversals over the com-
plex syntax trees of C++ programs would be needed to
get control over the application of transformation rules, but
proved cumbersome to specify. For the same reason, speci-
fying the complex semantics of C++ would be difficult. It is

this aspect where the generic traversals of Stratego provide
an advantage.

Several transformation systems for C++ exists.
OpenC++ [9, 10] provides a meta-object protocol for
C++. A meta-object protocol is an object-oriented interface
for specifying language extensions and transformations.
As such, OpenC++ has many of the same capabilities as
CodeBoost, and can be used to implement domain-specific
optimisations, as well as other transformations, in an
object-oriented fashion. However, it does not support cas-
cading transformations (i.e. applying other transformations
to the output of previous transformations), and specifying
transformations in C++ is cumbersome compared to using a
domain-specific transformation language such as Stratego.

Sage++ [4] is a C++ toolkit for source-to-source trans-
formation of C++ and Fortran. It provides classes for rep-
resenting the various nodes of a program tree, and tools for
data flow analysis and loop transformations. However, it
offers none of the support for easy rewriting and traversal
one would expect from a transformation language; match-
ing and building of terms must be hand-coded in C++.

ROSE II [11] is a transformation tool for optimising
object-oriented C++ code. Its primary focus has been
on developing optimisations for array classes. Targeted
optimisations include loop fusion, cache-based optimisa-
tions, temporal locality optimisations and the introduction
of performance-gathering options and metrics.

Simplicissimus [21, 22] shares many of the same goals
as CodeBoost. It is implemented as a plug-in to a com-
piler (currently GCC, but other compliers may be sup-
ported as well), and supports user-specified rewriting of
expressions. The compiler’s template mechanism is used
for pattern matching, to aid rewriting. Simplicissimus al-
lows some degree of strategic control over the application
of rules, through its arbiters (deciding which rules are ap-
plied), stages (deciding when they are applied), and direc-
tors (deciding how the program is traversed). The func-
tionality of Simplicissimus is similar to that of user-defined
rules in CodeBoost.

The Broadway compiler [14] allows library designers to
annotate their libraries with semantic information that will
be used in high-level optimisations. The compiler is fo-
cused on the numerical domain, where for instance a high-
level program may require the solution of a linear system
of equations. There exist many variations of such equation
solvers, and the more that is known about the properties of
the linear system, the more efficient the solver algorithm.
The Broadway compiler tries to automatically select opti-
mal solvers by using annotations from the solver library
to track properties of the data in the high-level program.
The Broadway compiler uses principles similar to our totem
functionality, but is more advanced.
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9. Conclusion and future work

In this paper, we have given a brief overview of the Code-
Boost source-to-source transformation system. The Code-
Boost framework provides the basic infrastructure needed
to apply transformations to C++ programs. CodeBoost is
extensible and can be used for experimentation with op-
timisations, as well as other kinds of transformations. It
supports cascading transformations; any number of trans-
formations can be applied in any order, in one or multi-
ple passes over the syntax tree, without having to pretty-
print and reparse. CodeBoost also allows C++ program-
mers to specify domain- and program-specific transforma-
tions through user-defined rewrite rules.

To support high-level C++ optimisations, we have basi-
cally had to build a limited C++ compiler frontend. For a
language as complex as C++, this is a large undertaking.
We believe that our design philosophy has helped ensure
our success, particularly in reminding us to keep things sim-
ple. For example, aiming at full C++ standards compliance
would be infeasible given our limited resources; therefore,
we have limited ourselves to the parts that are strictly nec-
essary for Sophus. This does not mean that CodeBoost is
useful only for toy examples; the Sophus application Seis-
Mod, which we have successfully optimised using Code-
Boost, consists of over 14000 lines of code.

The primary purpose of CodeBoost is to bridge the gap
between the high-level Sophus style, and the coding style
expected by optimising compilers, thus allowing the use
of high-level abstractions with little or no performance
penalty. With the optimisations we have implemented so
far, we have achieved significant speedups, beyond what
normal optimising compilers achieve.

Our most promising development is the user-defined
rules, which will allow easy implementation of future op-
timisations, especially combined with the totem annotation
mechanism. Future development efforts will focus on ex-
tending the rule language, making it suitable for the specifi-
cation of advanced transformation. Additionally, we intend
to evolve the supporting framework, refactoring as needed,
and moving in the direction of standards compliance. Bet-
ter C++ support will make CodeBoost more useful for non-
Sophus projects.

CodeBoost is Free Software, and can be freely mod-
ified and extended under the GNU General Public Li-
cense. For more information, see the CodeBoost web page:
http://www.codeboost.org/.
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