
Domain-Specific Optimisation

with

User-Defined Rules

in

Otto Skrove Bagge
Magne Haveraaen

RULE 2003

1



What is CodeBoost?

• A framework for source-to-source transformation of C++ programs

– Supports significant subset of C++, including function and operator
overloading, and templates

• Primarily intended to support the Sophus numerical library

– Domain-specific optimisation

• Written in the Stratego program transformation language — but the Sophus
developers shouldn’t need to learn about Stratego and CodeBoost internals

2



User-friendly specification of domain-specific optimisations

Optimisation rules should be easy to specify for people without intimate
knowledge of program transformation, CodeBoost and Stratego.

• Concrete syntax

– Stratego’s concrete syntax won’t work with the current C++ parser

• Embedded rules

– should be possible to specify optimisations within the C++ program,
together with relevant parts of the library

• Easy matching of calls to overloaded functions

– shouldn’t need to specify complete function signature in the
match pattern

3



Anatomy of a Rule

void rules()
{

int x;
simplify: pow(x, 2) = y * y, y = tmp(x);

}

• Syntactically valid C++ code, interpreted as rules by CodeBoost

• Rules are contained within rules() functions

• Local variables are meta-variables

• Conditions follow after comma; can call other rules or builtins

• Rules with predefined names such as simplify, topdown, bottomup, etc. will
be applied by the appropriate transformation modules

4



More features

• List matching — for functions accepting a variable number of arguments:

simplify: f(_list_(a), g(b), _list_(c))
= fg(b, _list_(a), _list_(c));

• Generic rules, in which the function name is also a meta-variable:

void rules()
{ T (*f)(T, T); // declare f as function pointer

T x, y;
commute: f(x, y) = f(y, x), commutative(!f(x, y));

int a, b;
commutative: (a + b) = true;

}

5



How does it work?

parsing → analysis → make-rules → transformation → pretty-printing

• Long pipeline of modules, working on abstract syntax tree

• Semantic analysis annotates all calls with their corresponding function sig-
natures, uniquely identifying the called function

• After analysis, make-rules picks up the rules and stores them alongside
the AST

• Rules are applied by transformation modules — the exact sequence of trans-
formation modules is specified by the user

• Rule interpreter is written in Stratego, and makes user-defined rules avail-
able as Stratego rules

6



Application: Index optimisations for Sophus

• Sophus uses a generic map function for operating on huge indexed data
structures (meshes). The abstract, generic nature of the map function makes
it prohibitively slow.

• User-defined rules are used to:

– Inline calls to overloaded index operators

– Remove redundant translations between mesh indexing (multi-dimensional)
and C++ array indexing (single integer)

• Results are impressive:

Not optimised Basic Idx opt. Speedup
Small 827.0s 629.9s 110.5s 5.7
Large 25435s 19028s 3996s 4.8

7



Index Optimisation Example

Mesh M; Point P; Shape S; int i;

inline: M[P] = M.data[getlex(P)];
simplify: getlex(setlex(S,i)) = i;

for(i = 0; i < N; i++)
A.data[i] = f(B[setlex(S,i)], C[setlex(S,i)]);

->
for(i = 0; i < N; i++)

A.data[i] = f(B.data[getlex(setlex(S,i))],
C.data[getlex(setlex(S,i))]);

->
for(i = 0; i < N; i++)

A.data[i] = f(B.data[i], C.data[i]);

8



Future plans

• Develop better strategies for domain-specific optimisation

• Combine with dataflow analysis

– Use analysis results in conditions

– For variables, do matching either on the variable itself, or on its propa-
gated value

9



Conclusion

• User-defined rules

– are written in concrete syntax, within C++ programs

– allow easy matching on semantic information — semantic analysis fills
in correct signature and type annotations

– support conditions and list matching

– support several different strategies (but not user-definable strategies)

– provide a convenient way of specifying domain-specific optimisations

10



• CodeBoost is Free Software (GPL)

• Source code and more information is available at

http://www.codeboost.org/

• Thanks to: Eelco Visser, Karl-Trygve Kalleberg and May-Lill Sande for help
and inspiration, and to Chr. Michelsen Research AS and the Research
Council of Norway (NFR) for financial support and computing resources.

11


